matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExtremwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Extremwert
Extremwert < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:39 Mi 15.06.2005
Autor: simone1000

Hallo,
komme mit dieser Aufgabe nicht weiter.
Kann mir jemand helfen?
Die Bahnkurve für den schrägen Wurf
y=x tan alpha- [mm] gx^2/2vo^2cos^2alpha [/mm]
a)Gesucht ist die maximale Wurfhöhe
b)Winkel alpha unter dem die Wurfweite maximal ist.
Gruß Simone

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwert: Differentiation
Status: (Antwort) fertig Status 
Datum: 22:05 Mi 15.06.2005
Autor: MathePower

Hallo Simone,

>  Die Bahnkurve für den schrägen Wurf
>  y=x tan alpha- [mm]gx^2/2vo^2cos^2alpha[/mm]
>  a)Gesucht ist die maximale Wurfhöhe

um die maximale Wurfhöhe zu erhalten, differenzierst Du nach x (1. Ableitung bilden) und setzt den erhaltenen Ausdruck gleich 0. Dann erhältst Du eine Lösung für x.

>  b)Winkel alpha unter dem die Wurfweite maximal ist.

Die Wurfweite ist ja die x-Koordinate, deren y-Wert ist am Anfang und Ende der Bahnkurve jeweils 0. Den von 0 verschiedenen Ausdruck differenzierst Du dann nach [mm]\alpha[/mm].  Null setzen und auflösen.

Gruß
MathePower

Bezug
                
Bezug
Extremwert: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Mi 15.06.2005
Autor: simone1000

Vielen Dank. Ich versuchs mal so. Hoffe ich habs gerafft.Gruß Simone


Bezug
        
Bezug
Extremwert: Differenzieren unnötig.
Status: (Antwort) fertig Status 
Datum: 23:27 Do 16.06.2005
Autor: leduart

Hallo Simone
>  Die Bahnkurve für den schrägen Wurf
>  y=x tan alpha- [mm]gx^2/2vo^2cos^2alpha[/mm]
>  a)Gesucht ist die maximale Wurfhöhe
>  b)Winkel alpha unter dem die Wurfweite maximal ist.

Bei so einfachen Kurven ist das Auffinden der Maxima einfacher.
1. Bei einer Parabel liegt der höchste Punkt =Scheitel immer in der Mitte der 2 Nullstellen. die eine ist x=o die andere ist x=... die Wurfweite. Also  liegt das Max bei der halben Wurfweite.
2. Wenn du die Wurfweite , d.h. die 2. Nullstelle berechnet hast steht da  unter anderem [mm] sin\alpha*cos\alpha [/mm]   da verwendest du [mm] sin\alpha*cos\alpha=0,5*sin(2*\alpha) [/mm] und wo der sin maximal ist, weiss man auch ohne Differenzieren.
Natürlich ist Differenzieren nicht falsch, aber ich find dazu ist es zu umständlich.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]