matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremw. best. im R^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremw. best. im R^n
Extremw. best. im R^n < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremw. best. im R^n: Verständnis/Vorgehen
Status: (Frage) überfällig Status 
Datum: 17:28 Sa 24.01.2009
Autor: Azarazul

Aufgabe
Bestimmen Sie Min/Max. von$$ f(x,y) = [mm] (x+y)*e^{-(x^2+y^2)} [/mm] $$.
auf der Menge $$ U = [mm] \{(x,y) | x^2+y^2 \le 1; y+x +1 \ge 0; y,x \ge -1 \}$$ [/mm]

Ok,
also wo hakt es hier. Ich hab erstmal die Nullstellen des Gradienten gesucht. Die liegen bei P1(0,5 ; 0,5) und P2 (-0,5 ; -0,5). Das entspricht dem Maximum und Minimum.

das letztere liegt jedoch auf dem Rand von U, wie ich in meiner Zeichnung sehe. Kann man so vorgehen ? das heißt erstmal so tun, als ob U größer wäre, dann den Gradienten gleich 0 setzen und nachschauen und dann gucken, ob der gefundene Punkt auch innerhalb der zu betrachtenden Menge liegt ?

Ich hab ansonsten den Rand als kreis parametrisiert, bis auf einen kreisabschnitt ( pi bis 3/2 pi), der nicht mehr zur menge gehört, wegen $x-y+1 [mm] \ge [/mm] 0$. dort fand ich, dass es ein randextremum gibt, aber genau in dem ausgeschlossenen abschnitt.

Wie gehe ich mit dem verbleibenden Linearen stück und den zwei ecken um ? auf diesem stück liegt das Minimum, welches ich mit Hilfes des Gradienten gefunden habe, kann ich das so nehmen oder muss ich nochmal auf diesem linearen stück speziell schauen ? wie ginge das dann ?

Vielen dank!

        
Bezug
Extremw. best. im R^n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 So 25.01.2009
Autor: Azarazul

Habt einer von euch vielleicht auch hierzu einen Tipp ?

Bezug
        
Bezug
Extremw. best. im R^n: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Mo 26.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]