matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesExtremstellen in Abh. von n..
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Extremstellen in Abh. von n..
Extremstellen in Abh. von n.. < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstellen in Abh. von n..: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:58 So 10.06.2007
Autor: electraZ

Hallo Leute! Uns wurde eine Aufgabe gegeben, die ich eifach nicht ganz verstehe, was von mir gewollt wird...

Also, es seien I [mm] \subset \IR [/mm] ein Intervall, [mm] x_0 \in \hat [/mm] I, n [mm] \in \IN [/mm] und f : I [mm] \rightarrow \IR [/mm] eine (n+1)-mal stetig differenzierbare Funktion mit [mm] f^{(k)}(x_0) [/mm] = 0 für k = 1, ..., n und [mm] f^{(n+1)}(x_0) \not= [/mm] 0.
Beweisen Sie:
  
   (i) f hat an [mm] x_0 [/mm] ein Maximum, falls n ungerade und [mm] f^{(n+1)}(x_0) [/mm] < 0 ist.
   (ii) f hat an [mm] x_0 [/mm] ein Minimum, falls n ungerade und [mm] f^{(n+1)}(x_0) [/mm] > 0 ist.
   (iii) f hat an [mm] x_0 [/mm] kein Extremum, falls n gerade ist.


Helft mir bitte mit der Aufgabe...

Danke

electraZ


        
Bezug
Extremstellen in Abh. von n..: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Mo 11.06.2007
Autor: Event_Horizon

Hallo!

Vielleicht erstmal zur Erklärung:

Aus der Schule weißt du:


1) Maximum: f'=0 und f''<0
2) Minimum: f'=0 und f''>0
3) Sattelpunkt:  f'=f''=0 und f''' [mm] \not= [/mm] 0



In den ersten beiden Fällen heißt das: eine Ableitung ist 0 bzw im Sinne der Aufgabe: n ungrade

Im letzten Fall gibts zwei Abletungen, die 0 sind, d.h. n grade.


Die Aufgabe besagt nun, daß das nicht nur in diesem Fall gilt sondern auch, wenn die ersten Ableitungen null sind, also z.B. auch:


1) Maximum: f'''=0 und f''''<0
2) Minimum: f'''=0 und f''''>0
3) Sattelpunkt:  f'''=f'#''=0 und f''''' [mm] \not= [/mm] 0

wobei hier  f'=f''=0 gilt.


Hilft dir das schonmal etwas? Einen Lösungsvorschlag habe ich leider grade nicht.

Bezug
                
Bezug
Extremstellen in Abh. von n..: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Mo 11.06.2007
Autor: electraZ

Das da ist auf jeden Fall schon hilfreich.. Ich versuch weiter selbst was zu schaffen

vielen Dank Ihnen!

schöne Grüße

electraZ

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]