matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExtremstellen bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Extremstellen bestimmen
Extremstellen bestimmen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstellen bestimmen: Frage
Status: (Frage) beantwortet Status 
Datum: 10:03 Sa 16.04.2005
Autor: Fabian

Hallo,

Ich hab folgende Aufgabe:

Bestimmen Sie die lokalen Extremstellen der Funktion

[mm] g:\IR^{2}\to\IR \vektor{x \\ y}\to x^{3}y-3xy+y^{2}+1 [/mm]

Erstmal hab ich die partiellen Ableitungen 1.Ordnung bestimmt:

[mm] f_{x}(x,y)=3x^{2}y-3y [/mm]

[mm] f_{y}(x,y)=x^{3}-3x+2y [/mm]

Jetzt muß ich ja die Nullstellen bestimmen. Wenn man genau hinschaut erkennt man 5 kritische Punkte:

[mm] \vec{z_{1}}= \vektor{ 0 \\ 0 } \vec{z_{2}}= \vektor{ \wurzel{3} \\ 0 } \vec{z_{3}}= \vektor{ -\wurzel{3} \\ 0 } \vec{z_{4}}= \vektor{ 1 \\ 1 } \vec{z_{5}}= \vektor{ -1 \\ -1 } [/mm]

Diese Punkte hab ich wie gesagt , nur durch raten ermittelt. Jetzt meine Frage! Gibt es hier nicht irgendeine Formel zur Berechnung der Nullstellen. Bei meinem Verfahren vergißt man ja schnell mal einen kritischen Punkt!


Vielen Dank für eure Antworten

Gruß Fabian


        
Bezug
Extremstellen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Sa 16.04.2005
Autor: Max

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Fabian,

ich kann schon einmal bestätigen, dass du alle kritischen Punkte gefunden hast - ich kenne aber auch keine Möglichkeit wie man alle Stellen errechnet. Man kann natürlich die Struktur der Gleichungen ausnutzen - und ich denke mal, dass du das ja auch getan hast -  um die Lösungen zu erraten.

Wegen $3x^2y-3y=0 \gdw \left(3x^2-3)y=0 \gdw \left( y=0 \vee 3x^2-3=0\right) \gdw \left( y=0 \vee ( x=1 \vee x=-1)\right)$

hat man ja schon recht eindeutige Kriterien, mit denen man durch Fallunterscheidung in der zweiten Gleichung die zugehörigen Werte ermitteln kann.

Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]