matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisExtrempunkte y Wert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Extrempunkte y Wert
Extrempunkte y Wert < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrempunkte y Wert: y Wert der Extrempunkte berech
Status: (Frage) beantwortet Status 
Datum: 15:57 Mi 29.03.2006
Autor: alex02

Hallo,
hab mal eine Frage zu den Extrempunkten (Min und Max)

Indem man die erste Ableitung Nullstellt und sie mit der PQ Formel ausrechnen bekommt man xa x1 und x2 raus das die x Stellen der Min und Max Werte sind.

Aber wie bekommt man die Y Stellen der Min und Max Werte raus?







Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt  http://www.onlinemathe.de/read.php?topicid=1000010296&kat=Schule&

        
Bezug
Extrempunkte y Wert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Mi 29.03.2006
Autor: kampfsocke

Hallo,

einfach die x-Werte in die Funktionsgleichung einsetzen. So bekommst du zu jedem x-Werte den dazugehörigen y-Wert.

//Sara

Bezug
        
Bezug
Extrempunkte y Wert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 29.03.2006
Autor: alex02

Gegeben ist die Funktion

f(x)=-0,5x³+2x²+4x-5,5

dann habe ich die 1. Nullstelle ausgerechnet also von -3 bis +3 in die Grundfunktion eingesetzt.

1. Nullstelle ist 1


Dann mit der Polynomdivision die Funktion ausgerechnet:

-0,5x²+1,5x+5,5

Dann die Funktion Nullsetzen und mit der PQ Formel die 2 und 3 Nullstelle ausgerechnet.



Jetzt habe ich die erste ableitung gemacht:

f´(x)=-1,5x²+4x+4

Diese Ableitung auch wieder Nullsetzen und mit der PQ Formel die Nullstellen ausrechnen.

Dann habe ich die 2. Ableitung gemacht:

f``(x)= -3x+4

Dann die Nullstellen von f`(x) in f``(x) einsetzen.

Ich dachte eigentlich das diese dann die y Werte der Min und Max Punkte sind.

Ist sonst alles richtiG?

Bezug
                
Bezug
Extrempunkte y Wert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Mi 29.03.2006
Autor: Stukkateur

Hallo Alex,

du schrobst:

> f´(x)=-1,5x²+4x+4

> Dann die Nullstellen von f'(x) in f''(x) einsetzen.
>  
> Ich dachte eigentlich das diese dann die y Werte der Min
> und Max Punkte sind.

Neinnein. Du musst die Nullstellen von f' in f einsetzen, um die Y-werte der Minima bzw.
der Maxima zu erhalten.

Tschö
    Stukkateur

Bezug
                        
Bezug
Extrempunkte y Wert: aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:36 Mi 29.03.2006
Autor: night

Um vielleicht noch mal einen überblick zu geben wie man extrempunkte ermittelt!

als erstes bildest du die erste ableitung
dann suchst du dir eine nullstelle
bildest die 2 ableitung und setzt diese nullstelle der ersten ableitung dort ein
nun erhälst du den x - wert .....um den y wert zu erhalten setzt du wie schon beantwortet....den x -wert in die ursprungsfkt. ein!
damit hast du den y-wert!

man nennt diese vorgänge auch notwendige und hinreichende Bedingung


mfg Daniel

Bezug
                        
Bezug
Extrempunkte y Wert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mi 29.03.2006
Autor: alex02

Vielen Dank an Sie beiden. Sie haben mich wohl vor einer 5 gerettet!!!



Aber eine kleine Frage zum Wendepunkt habe ich noch:

Man setzt     f``(x) = 0

Also z.B.   f``(x)=-3x+4  
                       0=-3x+4   /-4
                      -4=-3x      //(-3)
                1,333=x

Das ist also der X Wert des Wendepunktes?


Dann die 3. Ableitung bilden:

f```(x)=-3

und die Nullstelle von f``(x) in die 3. Ableitung einsetzen.

f```(1.333)=-3



Um den Y Wert des Wendepunktes zu ermitteln also wieder die Nullstelle von f``(x) in die Grundfunktion einsetzen?


Warum setzt man die Nullstellen der Min und Max Werte un die Nullstelle des Wendepunktes in die Nächsten ableitungen ein? Was bedeuten diese Ergebnisse?


Bezug
                                
Bezug
Extrempunkte y Wert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 29.03.2006
Autor: fmBjoern

Hallo alex02!

> Das ist also der X Wert des Wendepunktes?

Fast. Das ist der x-Wert eines möglichen Wendepunktes.

> Um den Y Wert des Wendepunktes zu ermitteln also wieder die
> Nullstelle von f''(x) in die Grundfunktion einsetzen?

Ja, genau.

> Warum setzt man die Nullstellen der Min und Max Werte un
> die Nullstelle des Wendepunktes in die Nächsten ableitungen
> ein? Was bedeuten diese Ergebnisse?

Die Frage möchte ich gerne etwas ausführlicher beantworten:

Die Ableitung $ f'(x) $ einer Funktion $ f(x) $ gibt die Steigung der Funktion $ f $ an der Stelle $ x $ an. An einer Extremstelle ist die Steigung 0, d.h. du suchst Extremstellen, indem du $ f'(x)=0 $ setzt. Dies nennt man die notwendige Bedingung für eine Extremstelle. Jetzt könnte an der Stelle $ [mm] x_0 [/mm] $, für die gilt $ [mm] f'(x_0) [/mm] = 0 $ aber auch ein Sattelpunkt liegen (das ist zum Beispiel der Punkt $ (0|0) $ bei $ y = [mm] x^3 [/mm] $). Da es sich dabei nicht um ein Maximum oder Minimum handelt, muss für ein "echtes" Extremum noch eine weitere Bedingung erfüllt werden: $ [mm] f''(x_0) \not= [/mm] 0 $. Jetzt fragst du, warum dies gilt und was es bedeutet. Also:
Nehmen wir die Ableitung von $ f(x) = [mm] x^2 [/mm] $: $ f'(x) = 2x $. Wir wissen, dass f ein Minimum bei $ (0|0) $ hat. Die Ableitung ist eine Gerade durch den Ursprung. Was fällt also auf: Bei $ x=0 $ wechselt $ f'(x) $ vom Negativen ins Positive (Vorzeichenwechsel, VZW). Da die Ableitung die Steigung der Originalfunktion ausdrückt, wechselt in der Originalfunktion die Steigung bei $ x=0 $ das Vorzeichen von $ - $ nach $ + $, wir haben also unser Minimum.
Schön, doch wozu die 2. Ableitung bilden? Nehmen wir mal $ f(x) = [mm] x^3 [/mm] $ als Beispiel. Wir wissen, dass $ f $ keine Extremwerte hat. Trotzdem mal die rechnerische Überprüfung: $ [mm] f'(x)=3x^2 [/mm] $ ist eine Parabel mit der Nullstelle $ [mm] x_0 [/mm] = 0 $. Also liegt an $ x=0 $ eine Extremstelle? Nein. Denn $ f' $ hat keinen Vorzeichenwechsel bei $ [mm] x_0 [/mm] = 0 $, d.h. in $ f $ ändert sich die Steigung nicht, also haben wir auch kein Extremum, sondern "nur" einen Sattelpunkt.
Den Vorzeichenwechsel der 1. Ableitung nennt man hinreichende Bedingung für eine Extremstelle. Damit man jetzt nicht immer Werte testweise in die 1. Ableitung einsetzen muss, um auf einen Vorzeichenwechsel zu untersuchen, formuliert man die Bedingung $ [mm] f''(x_0) \not= [/mm] 0 $. Denn wenn dies gilt, ist die Nullstelle der 1. Ableitung kein Maximum, die Funktion $ f'(x) $ schneidet also die x-Achse und berührt sie nicht nur. Das Ergebnis für $ [mm] f''(x_0) [/mm] $ hat aber noch einen Nutzen: Du kannst damit bestimmen, ob es sich um ein Minimum oder ein Maximum bei $ [mm] x_0 [/mm] $ handelt. Warum das? Wenn $ [mm] f''(x_0) [/mm] $ positiv ist, ist die Steigung von $ f' $ bei $ [mm] x_0 [/mm] $ ebenfalls positiv. Wie bei dem $ [mm] x^2 [/mm] $-Beispiel wechselt die Ableitung also von $-$ nach $+$, die Steigung von $ f $ also am Extremum von "fallend" nach "steigend". Damit handelt es sich um ein Minimum. Analog: Wenn $ [mm] f''(x_0) [/mm] < 0 $ handelt es sich bei $ [mm] x_0 [/mm] $ um ein Maximum.

Vielleicht hast du jetzt erkannt, dass sich bei der Wendepunktbestimmung das Problem nur eine Ableitungsebene weiter nach unten verschiebt, d.h. auch für Wendepunkte gibt es eine notwendige Bedingung ($ f''(x) = 0 $) und eine hinreichende Bedingung ($ [mm] f'''(x_0) \not= [/mm] 0 $).

Ich hoffe, du konntest meinen Ausführungen folgen, sonst melde dich ruhig...

Mit freundlichen Grüßen
Bjoern



Bezug
                                        
Bezug
Extrempunkte y Wert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 29.03.2006
Autor: alex02

Danke! Ihr habt mir echt geholfen!!!

Bezug
                        
Bezug
Extrempunkte y Wert: Frage zu den Begriffen
Status: (Frage) beantwortet Status 
Datum: 11:00 Mi 05.04.2006
Autor: Zwerglein

Hi, Stukkateur,

> Neinnein. Du musst die Nullstellen von f' in f einsetzen,
> um die Y-werte der Minima bzw.
>  der Maxima zu erhalten.

  
Wieso denn "y-Werte der Minima bzw. Maxima"??
Meines Wissens SIND die Maxima bzw. Minima bereits die y-Koordinaten!

Ich kenne im Bereich der Kurvendiskussion die zugehörigen Begriffe so:
"Extremalstelle" [mm] x_{o} [/mm]
"Extremwert" oder "Extremum"  [mm] y{o}=f(x_{o}) [/mm]
"Extrempunkt" [mm] (x_{o}; f(x_{o})) [/mm]

mfG!
Zwerglein

Bezug
                                
Bezug
Extrempunkte y Wert: Mathebank!
Status: (Antwort) fertig Status 
Datum: 16:29 Mi 05.04.2006
Autor: informix

Hallo Zwerglein,
> Hi, Stukkateur,
>  
> > Neinnein. Du musst die Nullstellen von f' in f einsetzen,
> > um die Y-werte der Minima bzw.
>  >  der Maxima zu erhalten.
>    
> Wieso denn "y-Werte der Minima bzw. Maxima"??
>  Meines Wissens SIND die Maxima bzw. Minima bereits die
> y-Koordinaten!
>  
> Ich kenne im Bereich der Kurvendiskussion die zugehörigen
> Begriffe so:
>  "Extremalstelle" [mm]x_{o}[/mm] [daumenhoch]
>  "Extremwert" oder "Extremum"  [mm]y{o}=f(x_{o})[/mm] [daumenhoch]

wenn man weiß, dass der Wert besonders groß ist [mm] \Rightarrow [/mm] Maximum,
wenn man weiß, dass der Wert besonders klein ist [mm] \Rightarrow [/mm] Minimum,
siehe auch MBExtremstellen

>  "Extrempunkt" [mm](x_{o}; f(x_{o}))[/mm]  [daumenhoch]

Gruß informix


Bezug
                
Bezug
Extrempunkte y Wert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mi 29.03.2006
Autor: Bastiane

Hallo!

Noch eine kleine Ergänzung:

> Gegeben ist die Funktion
>  
> f(x)=-0,5x³+2x²+4x-5,5
>  
> dann habe ich die 1. Nullstelle ausgerechnet also von -3
> bis +3 in die Grundfunktion eingesetzt.
>  
> 1. Nullstelle ist 1
>  
>
> Dann mit der Polynomdivision die Funktion ausgerechnet:
>  
> -0,5x²+1,5x+5,5
>  
> Dann die Funktion Nullsetzen und mit der PQ Formel die 2
> und 3 Nullstelle ausgerechnet.
>  
>
>
> Jetzt habe ich die erste ableitung gemacht:
>  
> f´(x)=-1,5x²+4x+4
>  
> Diese Ableitung auch wieder Nullsetzen und mit der PQ
> Formel die Nullstellen ausrechnen.
>  
> Dann habe ich die 2. Ableitung gemacht:
>  
> f''(x)= -3x+4
>  
> Dann die Nullstellen von f'(x) in f''(x) einsetzen.
>  
> Ich dachte eigentlich das diese dann die y Werte der Min
> und Max Punkte sind.

Du musst die Nullstellen der ersten Ableitung in die zweite einsetzen, um zu wissen, ob es sich wirklich um ein Extremum oder evtl. "nur" um einen Wendepunkt handelt. Und um herauszufinden, ob es ein Hoch- oder ein Tiefpunkt ist.

Aber um die y-Werte der Extrempunkte zu berechnen, musst du, wie schon erwähnt, den x-Wert in die Funktion einsetzen. Eigentlich ganz einfach, aber sämtliche Nachhilfeschülerinnen haben da bei mir auch immer Probleme mit. Aber es heißt doch extra f(x) - das bedeutet doch "Funktionswert an der Stelle x", also musst du x in die Funktion einsetzen, um den Funktionswert, also den y-Wert, zu erhalten.

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Extrempunkte y Wert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 29.03.2006
Autor: alex02

Eine kleine Frage habe ich leider noch.

Und zwar zur Polynomdivision.

Man probiert ja die erste Nullstelle der Grundfunktion zu finden durch probieren.

Also von -3 .... 3

wenn z.B. die Nullstelle bei 1 liegt muss man bei der Polynomdivison durch (x-1) teilen.

Und wenn die Nullstelle z.B. bei -3 liegt muss man dann durch (x+3) teilen?

Also immer das gegenteilige vorzeichen für die Klammer nehmen?

Bezug
                                
Bezug
Extrempunkte y Wert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mi 29.03.2006
Autor: Disap

Moin zusammen.

> Eine kleine Frage habe ich leider noch.
>  
> Und zwar zur Polynomdivision.
>  
> Man probiert ja die erste Nullstelle der Grundfunktion zu
> finden durch probieren.
>  
> Also von -3 .... 3
>  
> wenn z.B. die Nullstelle bei 1 liegt muss man bei der
> Polynomdivison durch (x-1) teilen.
>  
> Und wenn die Nullstelle z.B. bei -3 liegt muss man dann
> durch (x+3) teilen?
>  
> Also immer das gegenteilige vorzeichen für die Klammer
> nehmen?

Genau so ist es.

Angenommen ich betrachte die Funktion [mm] x^2-1 [/mm] und rate nun, wo eine Nullstelle ist, sie ist bei [mm] x_1 [/mm] =1

Nun würde man durch [mm] \blue{(x-1)} [/mm] teilen, da eben der blau dargestellte Ausdruck NULL ergeben muss.  Wäre die Nullstelle (von irgendeiner beliebigen Funktion) bei x=3
und du teilst durch (x+3), so wäre das in der Klammer nicht mehr null, die Polynomdivision geht nicht richtig auf, du wirst einen Rest erhalten.

Das heißt, um es vielleicht noch einmal in Worten zu verdeutlichen

[mm] (X_{Nullstelle} [/mm] - Zahl) =0

Oki?

mfG!
Disap

Bezug
                                
Bezug
Extrempunkte y Wert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Mi 05.04.2006
Autor: leduart

Hallo Alex
Wen du die Funktion f(x) in der Form f(x)=A*(x-a)*(x-b)*(x-c)*(x+d) gegeben hast, kannst du alle 4 Nullstellen direkt sehen, denn ein Produkt ist 0, wenn einer der Faktoren 0 ist.
Natürlich siehst du hier auch, dass man durch jede der (..) dividieren kann und dann noch die restlichen Klammern bleiben, man also die 3 anderen Nullstellen übrig behält.
Dass x+d=0 x=-d  und x-a=0 x=+a ergibt ist auch klar.
wenn jetzt f(x) in der ausmultiplizierten Form [mm] A*x^{4}+...... [/mm] vorliegt, und ich die Nullstelle  x=a oder x=-d geraten hab, kann ich natürlich genauso vorgehen und durch x-a  oder x+d  dividieren und die anderen Nullstellen sind dann im Rest.
Wenn du f(x) durch x+d dividiert hast und dabei ne neues Polynom g(x) raus hast, kannst du ja schreiben f(x)=g(x)*(x+d) und dann kann wieder einer der Faktoren 0 sein!
Ich hoff es ist ein bissel klarer!
Übrigens. Dass Lehrer so leicht Funktionen finden mit ganzzahligen einfachen Nullstellen, liegt daran, dass sie sie einfach schon als Produkt wie oben hinschreiben, den Schülern aber dann, damit die Polynomdivision üben, in der ausmultiplizierten Form geben
Gruss leduart

Bezug
        
Bezug
Extrempunkte y Wert: Mathebank!
Status: (Antwort) fertig Status 
Datum: 16:22 Mi 05.04.2006
Autor: informix

Hallo Alex und [willkommenmr].
> Hallo,
>  hab mal eine Frage zu den Extrempunkten (Min und Max)
>  
> Indem man die erste Ableitung Nullstellt und sie mit der PQ
> Formel ausrechnen bekommt man xa x1 und x2 raus das die x
> Stellen der Min und Max Werte sind.
>  
> Aber wie bekommt man die Y Stellen der Min und Max Werte
> raus?

>
Ich will noch einmal ein paar grundsätzliche Begriffe zusammenstellen:
"-stellen" sind stets x-Werte, an denen die Funktion eine bestimmte Eigenschaft hat:

MBNullstelle [mm] \gdw [/mm] f(x)=0
MBExtremstelle [mm] \gdw [/mm] die Funktion hat ein (relatives) Maximum oder Minimum (= Funktionswert)
MBWendestelle [mm] \gdw [/mm] die Krümmung des Funktionsgraphen ändert sich.

Klick auf die Links oben und du landest in unserer MBMatheBank, in der du noch viel mehr Wissenswertes entdecken kannst!

Beim Suchen nach Nullstellen wird dir der MBSatz von Vieta gute Dienste leisten!

Hier findest du alles Wissenswerte über die MBKurvendiskussion.

Viel Spaß beim Lesen und Stöbern!

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]