matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtremalproblem mit Nebenbedin
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremalproblem mit Nebenbedin
Extremalproblem mit Nebenbedin < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremalproblem mit Nebenbedin: Nachweis stationärer Pkt.
Status: (Frage) beantwortet Status 
Datum: 12:41 So 19.02.2006
Autor: McHannu

Aufgabe
Gegeben sei das Extremalproblem f(x,y) = [mm] x^2+y^2=min! [/mm] unter der Nebenbedingung g(x,y)=e^(x-1)-arctan(y+1)-1=0.
Zeigen Sie, dass xo=(1,-1) ein stationärer Punkt der Lagrange-Fkt. F ist und überprüfen Sie die Regularitätsbedingung im Punkt xo.

Hallo Forum,

ich habe ein Problem beim Nachweis des stationären Punktes. Damit dieser Punkt stationär ist muss grad F =0 sein. Da die Lagrange-Funktion F=f(x,y)+ lambda*g(x,y) ist und der der Punkt xo in g(x,y) eingesetzt g(1,-1)=0 ergibt, folgt für mich dass für grad F= grad f =0 genügt. Liege ich damit falsch? Weiterhin komme ich dann aber leider nicht auf grad f=0.
Vielleicht könnt ihr mir den entscheidenden Tipp geben.
Gruß McHannu

        
Bezug
Extremalproblem mit Nebenbedin: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Mi 22.02.2006
Autor: mathiash

Hallo und guten Morgen:

ich hab es noch nicht nachgerechnent, aber schau mal anhand des folgenden, ob Du alles richtig gerechnet hattest:

(1) Lagrange-Funktion

[mm] L(\lambda,x,y)\: =\: x^2+y^2-\lambda\cdot [/mm] g(x,y)

Dann die partiellen Ableitungen von L (nach [mm] x,y,\lambda) [/mm] gleich 0 setzen,
das Gleichungssystem loesen, dies gibt den stationaeren Punkt.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]