matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenExtrema unter NB
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Extrema unter NB
Extrema unter NB < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema unter NB: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 13:21 Mo 15.02.2016
Autor: Canibus

Aufgabe
Extrema unter Nebenbedingungen

Untersuchen Sie die Funktion

Q(x,y) = [mm] 2x^{4}y [/mm] + [mm] \bruch{25x}{y} [/mm] + [mm] 13x^{2} [/mm] - [mm] \bruch{50}{y} [/mm] - 56x + 21 (x,y > 0)

unter der Nebenbedingung [mm] x^{3}y^{3} [/mm] = 125

auf Extremwerte (und -stellen).

Bildung der Lagrange-Funktion:

[mm] L(x,y,\lambda) [/mm] := Q(x,y) + [mm] \lambda(x^{3}y^{3} [/mm] - 125)

Ableitungen

[mm] L_{x} [/mm] = [mm] 8x^{3}y [/mm] + [mm] \bruch{25}{y} [/mm] + 26x - 56 + [mm] 3\lambda x^{2}y^{3} [/mm]
[mm] L_{y} [/mm] = [mm] 2x^{4} [/mm] - [mm] \bruch{25x}{y^{2}} [/mm] + [mm] \bruch{50}{y^{2}} [/mm] + [mm] 3\lambda x^{3}y^{2} [/mm]
[mm] L_{\lambda} [/mm] = [mm] x^{3}y^{3} [/mm] - 125

Notwendige Bedingungen

[mm] L'(x,y,\lambda) [/mm] = [mm] (L_{x}, L_{y}, L_{\lambda}) [/mm] = 0

[mm] L_{x} [/mm] = 0
[mm] \gdw \lambda [/mm] = [mm] \bruch{56}{3x^{2}y^{3}} [/mm] - [mm] \bruch{8x}{3y^{2}} [/mm] - [mm] \bruch{25}{3x^{2}y^{4}} [/mm] - [mm] \bruch{26}{3xy^{3}} [/mm]

[mm] L_{y} [/mm] = 0
[mm] \gdw \lambda [/mm] = [mm] \bruch{25}{3x^{2}y^{4}} [/mm] - [mm] \bruch{2x}{3y^{2}} [/mm] - [mm] \bruch{50}{3x^{3}y^{4}} [/mm]

[mm] \lambda(L_{x}) [/mm] = [mm] \lambda(L_{y}) [/mm]
[mm] \gdw [/mm] 56xy - [mm] 6x^{4}y^{2} [/mm] - 50x - [mm] 26x^{2}y [/mm] + 50 = 0
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Genau an dieser Stelle komme ich nicht weiter. Wie löse ich hier nach x bzw. y auf? Oder hätte ich einen anderen Ansatz wählen sollen?

Vielen Dank im Voraus schon einmal für eure Hilfe!

Mit besten Grüßen,
Canibus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extrema unter NB: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Mo 15.02.2016
Autor: Jule2

Hi,
du hast doch noch eine dritte Gleichung die du noch nicht eingebracht hast nämlich:
[mm] L_{\lambda} =x^{3}y^{3}-125=0 [/mm]
Nun kannst du nach x oder y auflösen und einsetzen!!

LG



Bezug
                
Bezug
Extrema unter NB: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:29 Mo 15.02.2016
Autor: Canibus

Ach Gott, manchmal sieht man den Wald vor lauter Bäumen nicht...

Vielen Dank, Jule!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]