Extrema, Nablakalkül < Analysis < Hochschule < Mathe < Vorhilfe
|
Hi,
ich hab nur ein paar kurze Fragen zu ein paar technischen "Kleinigkeiten".
Ich hab bei meinen Aufgaben einige vermeintliche Extremstellen, bei denen keine Kriterien eine Aussage liefern. (Also z.b. Hesseform=0, Determinante=0, Folge der Determinanten/Eigenwerte ohne Aussage)
Ist da das "per Hand" herangehend mit kleinen [mm] \varepsilon [/mm] um die vermeintliche Extremstelle die einzige Möglichkeit?
Wenn es keine Extremstelle ist, und man den Widerspruch damit zeigen kann, mag es ja gehen, aber wenn es eine ist, dann müsste ich mich ja von unendliche vielen Seiten nähern um ausschließen zu können, dass es keinen Punkt gibt, der die Behauptung, es wäre eine Extremstelle zunichte macht, oder?
Und eine Frage zum Rechnen mit Nabla:
(Da ich das Symbol nicht gefunden hab, nehm ich dafür jetzt [mm] \vee [/mm] )
Und zwar soll man für eine Fkt. u(x,y) ausrechnen, was
rot grad u ist, also [mm] \vee \times \vee [/mm] u.
jetzt könnt ich ja [mm] (\vee \times \vee) [/mm] als Kreuzprodukt interpretieren und berechnen mit [mm] \vmat{ x & y & z \\ \bruch{\partial}{\partial x} & \bruch{\partial}{\partial y} & \bruch{\partial}{\partial z} \\ \bruch{\partial}{\partial x} & \bruch{\partial}{\partial y} & \bruch{\partial}{\partial z}}*u
[/mm]
woraufhin ich (da [mm] \bruch{\partial u}{\partial z} [/mm] = z = 0 in diesem Fall) bekommen habe, dass rot grad u = 0 ist.
Kann man das so machen? Da ja genau genommen Nabla zuerst auf u angwandt wird und dann das Produkt kommt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:54 Mo 13.06.2005 | Autor: | QCO |
Wenn es keine Extremstelle ist, und man den Widerspruch damit zeigen kann, mag es ja gehen, aber wenn es eine ist, dann müsste ich mich ja von unendliche vielen Seiten nähern um ausschließen zu können, dass es keinen Punkt gibt, der die Behauptung, es wäre eine Extremstelle zunichte macht, oder?
Also du kannst zwar auch versuchen zu zeigen, dass es keinen Punkt gibt, der gegen eine Extremstelle spricht, aber einfacher ist wohl der direkte Weg, den du oben schon ansprichst.
Versuch doch zu zeigen, dass es sich um ein Extremum nach Def. handelt ( [mm] f(x_{0}) \le [/mm] oder [mm] \ge [/mm] f(x) [mm] \forall [/mm] x [mm] \in U_{\varepsilon}(x_{0}).
[/mm]
|
|
|
|
|
Hallo,
> Und eine Frage zum Rechnen mit Nabla:
> (Da ich das Symbol nicht gefunden hab, nehm ich dafür
> jetzt [mm]\vee[/mm] )
> Und zwar soll man für eine Fkt. u(x,y) ausrechnen, was
> rot grad u ist, also [mm]\vee \times \vee[/mm] u.
> jetzt könnt ich ja [mm](\vee \times \vee)[/mm] als Kreuzprodukt
> interpretieren und berechnen mit [mm]\vmat{ x & y & z \\ \bruch{\partial}{\partial x} & \bruch{\partial}{\partial y} & \bruch{\partial}{\partial z} \\ \bruch{\partial}{\partial x} & \bruch{\partial}{\partial y} & \bruch{\partial}{\partial z}}*u[/mm]
>
> woraufhin ich (da [mm]\bruch{\partial u}{\partial z}[/mm] = z = 0 in
> diesem Fall) bekommen habe, dass rot grad u = 0 ist.
> Kann man das so machen? Da ja genau genommen Nabla zuerst
> auf u angwandt wird und dann das Produkt kommt.
Die Rotation von grad u (x,y) ist so definiert:
[mm]rot\;grad\;u\; = \;\nabla \; \times \;\nabla u[/mm]
Gruß
MathePower
|
|
|
|