matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationExtrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Extrema
Extrema < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:56 So 07.08.2011
Autor: RWBK

Aufgabe
Hallo an folgender Aufgabe soll ich eine Kurvendiskussion durchführen:
[mm] f(x)=\bruch{arctan(x)}{1+x^{2}} [/mm]
Definitionsbereich, Symmetrieeigenschaften, Nullstellen habe ich alle ermittelt ,aber bei den Extremas da ist Schluss.



Hier einmal mein Ansatz:


Definitionsbereich
[mm] f(x)=\bruch{arctan(x)}{1+x^{2}}; x\in\IR [/mm]

Symmetrie:

[mm] f(-x)=\bruch{arctan(-x)}{1+(-x)^{2}}=\bruch{arctan(-x)}{1+x^{2}}\not=f(x) [/mm] somit Funktion unsymmetrisch

Nullstellen:

f(x)=0
0=arctan(x)
x=0

Bis hierher müsste meiner Meinung nach alles richtig sein.

[mm] f(x)=\bruch{arctan(x)}{1+x^{2}} [/mm]
f´(x) [mm] =f(x)=\bruch{1-arctan(x)*2x}{(1+x^{2})^{2}} [/mm]
f´´(x) [mm] =\bruch{arctan(x)*[-2+6x^{2}]-6x}{(1+x^{2})^{3}} [/mm]

Das war schon mal für mich ziemliche hart^^. Hoffe das sie richig sind
f´(x)=0
0=1-arctan(x)*2x und was nun das kann ich ja gar nicht nach x auflösen. Weiß jetzt überhaupt nicht mehr wie ich weiter vorgehen soll. Hab noch eine weitere Frage was sind Asymptoten und wie ermittel ich sie?

Hoffe es kann mir jemand helfen.

mfg

        
Bezug
Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 So 07.08.2011
Autor: notinX

Hallo,

> Hallo an folgender Aufgabe soll ich eine Kurvendiskussion
> durchführen:
>  [mm]f(x)=\bruch{arctan(x)}{1+x^{2}}[/mm]
>  Definitionsbereich, Symmetrieeigenschaften, Nullstellen
> habe ich alle ermittelt ,aber bei den Extremas da ist
> Schluss.
>  
>
> Hier einmal mein Ansatz:
>  
>
> Definitionsbereich
>  [mm]f(x)=\bruch{arctan(x)}{1+x^{2}}; x\in\IR[/mm]

also [mm] $\mathbb D=\mathbb [/mm] R$

>  
> Symmetrie:
>  
> [mm]f(-x)=\bruch{arctan(-x)}{1+(-x)^{2}}=\bruch{arctan(-x)}{1+x^{2}}\not=f(x)[/mm]
> somit Funktion unsymmetrisch

Das stimmt nicht. Schau Dir mal die Potenzreihendarstellung des [mm] $\arctan [/mm] x$ an.

>  
> Nullstellen:
>  
> f(x)=0
>  0=arctan(x)
>  x=0

Falls Du damit sagen willst, dass [mm] $x_0=0$ [/mm] die einzige Nullstelle ist, stimmt das auch.

>  
> Bis hierher müsste meiner Meinung nach alles richtig
> sein.
>  
> [mm]f(x)=\bruch{arctan(x)}{1+x^{2}}[/mm]
>  f´(x) [mm]=f(x)=\bruch{1-arctan(x)*2x}{(1+x^{2})^{2}}[/mm]
>  f´´(x) [mm]=\bruch{arctan(x)*[-2+6x^{2}]-6x}{(1+x^{2})^{3}}[/mm]
>  
> Das war schon mal für mich ziemliche hart^^. Hoffe das sie
> richig sind

Ja, die Ableitungen stimmen.

> f´(x)=0
>  0=1-arctan(x)*2x und was nun das kann ich ja gar nicht
> nach x auflösen. Weiß jetzt überhaupt nicht mehr wie ich

Dir wird wohl nichts anderes übrig bleiben, als die Nullstellen numerisch zu ermitteln.

> weiter vorgehen soll. Hab noch eine weitere Frage was sind
> Asymptoten und wie ermittel ich sie?

Asymptoten zeigen das Verhalten der Funktion für [mm] $x\to\pm\infty$ [/mm] (siehe wiki o.ä.).

>  
> Hoffe es kann mir jemand helfen.
>  
> mfg

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]