matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Expontenten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Expontenten
Expontenten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Expontenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Fr 02.03.2007
Autor: KnockDown

Hi,

wie rechnet man mit der "Hand" folgendes z. B. aus: [mm] $3^{\bruch{3}{4}}$ [/mm]



Danke


Gruß Thomas

        
Bezug
Expontenten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Fr 02.03.2007
Autor: angela.h.b.


> Hi,
>  
> wie rechnet man mit der "Hand" folgendes z. B. aus:
> [mm]3^{\bruch{3}{4}}[/mm]
>  


Hallo

[mm] 3^{\bruch{3}{4}}=\wurzel[4]{3^3}=\wurzel[4]{27}. [/mm]

Mit der Hand ausrechnen würde ich das per Intervallschachtelung mit Intervallhalbierung.


[mm] x_0=2 [/mm]    
[mm] x_0^4=16 [/mm]          
[mm] y_0=3 [/mm]        
[mm] y_0^4=81 [/mm]              
[mm] z_0=2.5 [/mm]    
[mm] z_0^4=39,06 [/mm]


[mm] x_1=2 [/mm]    
[mm] x_1^4=16 [/mm]        
[mm] y_1=2.5 [/mm]    
[mm] y_1^4=39,06 [/mm]          
[mm] z_1=2.25 [/mm]  
[mm] z_1^4=25,63 [/mm]

[mm] x_2=2.25 [/mm]    
[mm] x_2^4=25.63 [/mm]        
[mm] y_2=2.5 [/mm]    
[mm] y_2^4=39,06 [/mm]      
[mm] z_2=... [/mm]
usw.


Gruß v. Angela      



Bezug
                
Bezug
Expontenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Fr 02.03.2007
Autor: cherie

Jetzt hab ich doch mal ne Frage - ich hätte die Aufgabe anders gelöst, komme aber auf ein anderes Ergebnis, was ist falsch?
[mm] 3^{\bruch{3}{4}} [/mm]
= [mm] (3^{\bruch{1}{4}})^{3} [/mm]
= [mm] ((3^{\bruch{1}{2}})^{\bruch{1}{2}})^{3} [/mm]
[mm] =((\wurzel\wurzel{3}))^{3} [/mm] (die obere Wurzel geht nur bis zur unteren!!!)
= [mm] 3^{3} [/mm]
= 27

wär lieb, wenn jemand helfen könnte!
Liebe Grüße
cherie

Bezug
                        
Bezug
Expontenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Fr 02.03.2007
Autor: cherie

ach upsi...hab den Fehler schon [mm] \wurzel [/mm] aus [mm] \wurzel{3} [/mm] ist ja nicht 3 ;)

Bezug
                        
Bezug
Expontenten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Fr 02.03.2007
Autor: angela.h.b.


> Jetzt hab ich doch mal ne Frage - ich hätte die Aufgabe
> anders gelöst, komme aber auf ein anderes Ergebnis, was ist
> falsch?
>  [mm]3^{\bruch{3}{4}}[/mm]
>  = [mm](3^{\bruch{1}{4}})^{3}[/mm]
>  = [mm]((3^{\bruch{1}{2}})^{\bruch{1}{2}})^{3}[/mm]
>  [mm]=((\wurzel\wurzel{3}))^{3}[/mm] (die obere Wurzel geht nur bis
> zur unteren!!!)
>  = [mm]3^{3}[/mm]
>  = 27

Hallo,

DASS es falsch ist, ist aber klar: es kann ja nicht  [mm] 3^{\bruch{3}{4}} [/mm] dasselbe wie [mm] 3^3 [/mm] sein.

>  [mm]3^{\bruch{3}{4}}[/mm]
>  = [mm](3^{\bruch{1}{4}})^{3}[/mm]
>  = [mm]((3^{\bruch{1}{2}})^{\bruch{1}{2}})^{3}[/mm]

[mm] =(\wurzel{\wurzel{3}})^3 [/mm]

[mm] =(\wurzel{\wurzel{3}})^2*\wurzel{\wurzel{3}} [/mm]

[mm] =\wurzel{3}*\wurzel{\wurzel{3}}=3^{\bruch{1}{2}}*3^{\bruch{1}{4}}, [/mm]
(was man schneller hätte haben können.)

Man kann's auch so machen

[mm] 3^{\bruch{3}{4}}=3^{1-\bruch{1}{4}}=3*3^{-\bruch{1}{4}}=\bruch{3}{3^{\bruch{1}{4}}}. [/mm]


Die ursprungsfrage hatte ich allerdings so verstanden: wie kommt man per hand auf den ungefähren Wert.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]