matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Exponentialgleichungen
Exponentialgleichungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichungen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:48 Di 01.02.2005
Autor: Sonnenmond

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

wie löst man exponentialgleichungen??

z.B. 2*e hoch -x = e hoch (x+1)

        
Bezug
Exponentialgleichungen: 1. Schritte
Status: (Antwort) fertig Status 
Datum: 18:31 Di 01.02.2005
Autor: Loddar

Hallo Sonnenmond,

auch Dir hier ein [willkommenmr] !!!

Scheinbar hast Du Dir unsere Forenregeln nicht ganz durchgelesen, insbesondere was die Lösungsansätze und die Anrede betrifft ...


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> wie löst man exponentialgleichungen??
>  
> z.B. 2*e hoch -x = e hoch (x+1)

Du meinst:  $2 * [mm] e^{-x} [/mm] \ = \ [mm] e^{x+1}$ [/mm]  ??
Bitte das nächste Mal auch den Formel-Editor benutzen.


Teile doch mal auf beiden Seiten durch [mm] $e^{-x}$ [/mm] und fasse dann auf der rechten Seite nach MBPotenzgesetz zusammen ...


Poste dann mal Deine Lösung zur Kontrolle, wenn du möchtest ...

Gruß
Loddar

Bezug
        
Bezug
Exponentialgleichungen: weitere Schritte ...
Status: (Antwort) fertig Status 
Datum: 00:48 Mi 02.02.2005
Autor: dominik

Wenn du den Term mit dem negativen Exponenten umschreibst, siehst du vielleicht besser, was anschliessend getan werden könnte:

[mm]2*e^{-x} = e^{x+1}[/mm]
[mm]\bruch{2}{e^x} = e^{x+1}[/mm]
Jetzt beide Seiten mit  [mm]e^x[/mm] multiplizieren:
[mm]2= e^{x+1}*e^x=e^{x+1+x}=e^{2x+1}[/mm]
Nun wird mit Hilfe des Logarithmus die Unbekannte x "heruntergeholt":
[mm]ln(2)=ln(e^{2x+1})=2x+1[/mm]
[mm]2x=ln(2)-1[/mm]
[mm] x=\bruch{ln(2)-1}{2}=\bruch{1}{2}ln(2)-\bruch{1}{2}=ln(2^\bruch{1}{2})-\bruch{1}{2}=ln\wurzel{2}-\bruch{1}{2} [/mm]

Viele Grüsse
dominik





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]