matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialgleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Exponentialgleichungen
Exponentialgleichungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichungen: Widerspruch
Status: (Frage) beantwortet Status 
Datum: 08:56 Do 12.04.2018
Autor: wolfgangmax

Aufgabe
<br>
5*3^(2x-1)=4^(x-3)
 


<br>Zu dieser Exponentialgleichung habe ich zwar eine Lösung, aber für mich liegt trotzdem ein Widerspruch vor:
- meine Lösung: x= -5,76, x eingesetzt in die Gleichung ergibt eine wahre Aussage
- die Gleichung forme ich um in eine Funktion, die dann den Funktionswert Null ergibt. 
- Und jetzt der Widerspruch: Eine Exponentialfunktion hat keine Nullstelle, lt Rechnung aber doch.
Wo liegt mein Denk- bzw. Rechenfehler?

Hier meine Lösungsweg:
         5*3^(2x-1)=4^(x-3)
    [mm] 5*3^{2x}*3^{-1}=4^x*4^{-3} [/mm]
        [mm]  3^{2x}*5/3=4^x*1/64 [/mm]
            [mm] 9^x*5/3=1/64  [/mm]  (dividiert durch [mm] 4^x) [/mm]
        [mm] (9/4)^x*5/3=1/64  [/mm]   (dividiert durch 5/3)
            [mm] (9/4)^x=0,009375 [/mm]
   log zur Basis (9/4) 0,009375=x
                  x= -5,76

MfG
wolfgangmax

 

        
Bezug
Exponentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Do 12.04.2018
Autor: Diophant

Hallo,

> 5*3^(2x-1)=4^(x-3)
>  

>

> Zu dieser Exponentialgleichung habe ich zwar eine
> Lösung, aber für mich liegt trotzdem ein Widerspruch
> vor:
> - meine Lösung: x= -5,76, x eingesetzt in die Gleichung
> ergibt eine wahre Aussage
> - die Gleichung forme ich um in eine Funktion, die dann
> den Funktionswert Null ergibt.

Man kann nicht eine Gleichung in eine Funktion umformen. Was du vermutlich meinst, ist die Gleichung auf die Nullform zu bringen und den (auf der anderen Seite der Gleichung) entstandenen Term als Funktionsterm aufzufassen, also bspw. so:

[mm]5*3^{2x-1}-4^{x-3}=0[/mm]

> - Und jetzt der Widerspruch: Eine Exponentialfunktion hat
> keine Nullstelle, lt Rechnung aber doch.
> Wo liegt mein Denk- bzw. Rechenfehler?

Wenn ich mit meiner Vermutung richtig liege, dann ist das ja keine Exponentialfunktion mehr, sondern eine Summe bzw. Differenz zweier Exponentialfunktionen. So eine Differenz kann selsbtverständlich Nullstellen besitzen (sonst hätte die Grundgleichung ja keine Lösung!).

> Hier meine Lösungsweg:
>          5*3^(2x-1)=4^(x-3)
>     [mm]5*3^{2x}*3^{-1}=4^x*4^{-3}[/mm]
>         [mm] 3^{2x}*5/3=4^x*1/64[/mm]
>             [mm]9^x*5/3=1/64 [/mm]  (dividiert durch [mm]4^x)[/mm]
>         [mm](9/4)^x*5/3=1/64 [/mm]   (dividiert durch 5/3)
>             [mm](9/4)^x=0,009375[/mm]
>    log zur Basis (9/4) 0,009375=x
>                   x= -5,76

Die Lösung stimmt, ich habe es nochmal nachgerechnet.


Gruß, Diophant
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]