matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialgleichung mit x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Exponentialgleichung mit x
Exponentialgleichung mit x < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung mit x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Di 08.06.2010
Autor: Acronis

Hallo,

ich versuche mich gerade mit e Funktionen nach x auflösen. Komme nicht mehr weiter, vll. kann mir ja jemand helfen?

[mm] y=e^{x^2-2*\wurzel{x^2}}-\bruch{1}{e} [/mm]

[mm] y=\frac{e^{x^{2}}}{e^{2*\wurzel{x^2}}}-\bruch{1}{e} [/mm]

[mm] y=\frac{e^{x^{2}}}{e^{2*x}}-\bruch{1}{e} [/mm]

[mm] y=\frac{e^{x^{}}}{e^{2}}-\bruch{1}{e} [/mm]

stimmt das soweit? Danke schonmal

        
Bezug
Exponentialgleichung mit x: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Di 08.06.2010
Autor: schachuzipus

Hallo André,

> Hallo,
>  
> ich versuche mich gerade mit e Funktionen nach x auflösen.
> Komme nicht mehr weiter, vll. kann mir ja jemand helfen?
>  
> [mm]y=e^{x^2-2*\wurzel{x^2}}-\bruch{1}{e}[/mm]
>  
> [mm]y=\frac{e^{x^{2}}}{e^{2*\wurzel{x^2}}}-\bruch{1}{e}[/mm]
>  
> [mm]y=\frac{e^{x^{2}}}{e^{2*x}}-\bruch{1}{e}[/mm] [notok]

Hier stimmt's nicht mehr, es ist [mm] $\sqrt{x^2}=|x|$ [/mm] !!

>  
> [mm]y=\frac{e^{x^{}}}{e^{2}}-\bruch{1}{e}[/mm]
>  
> stimmt das soweit? Danke schonmal

Nicht ganz.

Bringe mal besser direkt das [mm] $\frac{1}{e}$ [/mm] rüber, wende den $ln$ auf die Gleichung an, dann hast du eine quadratische Gleichung in x.

Mache dann eine quadr. Ergänzung oder p/q-Formel ...

Das sieht mir sinnvoller aus (ohne dass ich's gerechnet habe)

Das kannst du mal machen, ich bin zu faul, schau's aber gerne nach, wenn du ne Rechnung postest ...


LG

schachuzipus

Bezug
                
Bezug
Exponentialgleichung mit x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Di 08.06.2010
Autor: Acronis

danke,

ich habe es so gemacht

[mm] y=x^{2}-2\cdot \wurzel {x^{2}}=\frac{1}{e\cdot \ln \left( e \right)} [/mm]

wie geht es weiter?

Bezug
                        
Bezug
Exponentialgleichung mit x: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Di 08.06.2010
Autor: MathePower

Hallo Acronis,

> danke,
>  
> ich habe es so gemacht
>  
> [mm]y=x^{2}-2\cdot \wurzel {x^{2}}=\frac{1}{e\cdot \ln \left( e \right)}[/mm]
>  
> wie geht es weiter?


Nach meinem Vorredner ist das äquivalent mit

[mm]x^{2}-2\cdot \vmat{x}=\frac{1}{e\cdot \ln \left( e \right)}[/mm]

Wenn jetzt auf die linke Seite dieser Gleichung
die quadratische Ergänzung an.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]