matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Exponentialgleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Exponentialgleichung
Exponentialgleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:49 So 18.02.2007
Autor: tuxor

Aufgabe
Finde alle rationalen Zahlen [mm]x[/mm], welche die Gleichung [mm]4^x + 9^x + 16^x = 6^x + 8^x + 12^x[/mm] erfüllen.

Hallo allerseits,

wo das Problem bei der Aufgabe liegt, ist wohl ziemlich offensichtlich ;-) Ich habe bereits vergeblich versucht, durch Primfaktorzerlegung (es kommen übrigens auffälligerweise nur die Primfaktoren 2 und 3 vor) die Gleichung zu vereinfachen. Was anderes will mir nach längerem Kopfzerbrechen nicht einfallen. Mit Logarithmen bzw deren Gesetzen kommt man vermutlich nicht weiter.
Ich bin auch für Ansatzideen sehr dankbar!

LG
tuxor


[mm] PS_1 [/mm] Hat jemand übrigens einen Vorschlag, in welchem Unterforum dieses Problem besser aufgehoben gewesen wäre?

[mm] PS_2 [/mm] Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:45 Mo 19.02.2007
Autor: Steffi21

Hallo,

x=0, denn [mm] a^{0}=1, [/mm] also 1+1+1=1+1+1
Steffi

Bezug
                
Bezug
Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Mo 19.02.2007
Autor: tuxor

Ja, deine Antwort ist natürlich richtig. Mir stellt sich aber die Frage, ob es nicht vielleicht mehrere Lösungen gibt?! Wie ist das denn bei Exponentialgleichungen? Da kann es doch auch mehrere Lösungen geben, oder etwa nicht?

Bezug
                        
Bezug
Exponentialgleichung: Nachfrage
Status: (Antwort) fertig Status 
Datum: 15:18 Mo 19.02.2007
Autor: informix

Hallo tuxor und [willkommenmr],

> Ja, deine Antwort ist natürlich richtig. Mir stellt sich
> aber die Frage, ob es nicht vielleicht mehrere Lösungen
> gibt?! Wie ist das denn bei Exponentialgleichungen? Da kann
> es doch auch mehrere Lösungen geben, oder etwa nicht?

$ [mm] 4^x [/mm] + [mm] 9^x [/mm] + [mm] 16^x [/mm] = [mm] 6^x [/mm] + [mm] 8^x [/mm] + [mm] 12^x [/mm] $

Warum zerlegst du die Terme nicht mal in ihre Primfaktoren und versuchst sie zusammenzufassen?
Vielleicht erkennst du dann weitere Lösungen?

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]