matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Exp- und Log-Funktionen" - Exponentialgleichung
Exponentialgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung: rechnerisch lösbar?
Status: (Frage) beantwortet Status 
Datum: 20:26 Do 21.09.2006
Autor: janyou

Aufgabe
[mm] 3^x [/mm] + [mm] 7^x [/mm] = 58

x = ?

Hallo,

ich wiederhole gerade Exponentialgleichungen und mich ärgert die oben gestellte Aufgabe.
Denn obwohl ich durch Überlegung natürlich auf die Lösung x = 2 komme [(3 hoch 2) plus (7 hoch 2) = 58], weiss ich nicht, wie der rechnerische Weg zur Lösung aussehen muss.

[mm] lg[3^x [/mm] + [mm] 7^x] [/mm] = lg[58] ist nicht sehr hilfreich

[mm] lg[3^x] [/mm] + [mm] lg[7^x] [/mm] = lg[58] ist nicht erlaubt

eine gemeinsame Basis für 3 und 7 finde ich nicht

und ein ^x auszuklammern klappt irgendwie och nicht:(

Vielleicht gibt es ja jemanden hier, der mir helfen kann.

Vielen Dank im Voraus.

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialgleichung: Algebraisch nicht lösbar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Do 21.09.2006
Autor: mechanix

Hallo,

durch logharithmieren ist diese Aufgabe meines Wissens nicht lösbar.

Durch numerische Rechnungen kann man das aber dennoch genau bestimmen:
z.B. mit Mupad:
>> numeric::fsolve(-58 + [mm] 3^x [/mm] + [mm] 7^x [/mm] = 0,x=0..10)
                                 [x = 2.0]

Kann sein, dass der erwartete Lösungeweg noch irgendeine iterations-Formel beinhaltet, aber da hab ich keine Ahnung.

Gruß
mechanix

Bezug
        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Do 21.09.2006
Autor: leduart

Hallo
So Gleichungen lassen sich nicht "rechnerisch" also nur durch Umformen und log anwenden lösen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]