matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisExponentialfunktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Exponentialfunktionen
Exponentialfunktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Sa 24.09.2005
Autor: Nada_o

Hallo,

Ich habe ein Problem und hoffe, dass mir jemand helfen kann.
Also gegeben ist die Funktion $  [mm] f(x)=x*e^{2x+3}$. [/mm]
Gesucht ist der Punkt mit waagerechter Tangente.
Mein Ansatz war die Anbleitungsfunktion Null zu stetzen und nach $ x $ aufzulösen. Ableitung: [mm] $f'(x)=e^{2x+3} [/mm] (1+2x)$ (Richtig?), d.h.
[mm] $e^{2x+3} [/mm] (1+2x)=0$ und hier liegt mein Problem. Wie löse ich nach $ x $ auf? Ich weiß nur, dass bei [mm] $c=a^x \Rightarrow x=\bruch{log(c)}{log(a)}$. [/mm] Aber hier habe ich das $ x $ als Exponenten und als normalen Wert.
Hört sich vielleicht blöd und einfach an, wäre aber trotzdem nett jemand helfen könnte.


        
Bezug
Exponentialfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Sa 24.09.2005
Autor: BennoO.

Hi.
Also, deine Ableitung stimmt. Nun überleg mal, wenn du die Nullstellen der Funktion [mm] f'(x)=e^{2x+3}(2x+1) [/mm] berechnen möchtest gilt [mm] ja:e^{2x+3}(2x+1)=0. [/mm]
So, nun gibt es ja nur zwei Möglichkeiten; entweder der Term in Klammer ist Null, sprich (2x+1) oder [mm] e^{2x+3} [/mm] ist gleich Null. Wie sieht denn die e-Funktion aus? Hat e denn überhaupt eine Nullstelle?
Vielleicht hilft dir das ja weiter.
Falls du noch weitere Fragen hast, dann poste ruhig.
Viele Grüße Benno

Bezug
                
Bezug
Exponentialfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Sa 24.09.2005
Autor: Nada_o

Hi Benno,

Danke für deine schnelle Antwort.

> zwei Möglichkeiten; entweder der Term in Klammer ist Null, sprich
> (2x+1) oder [mm]e^{2x+3}[/mm] ist gleich Null.

Wie konnte ich das nur vergessen.

> Wie sieht denn die e-Funktion aus? Hat e denn
> überhaupt eine Nullstelle?

Nein, natürlich nicht, denn der Graph nähert sich asymptotisch der x-Achse.
D.h. die einzige Nullstelle ist -0.5 (Richig?)

>  Vielleicht hilft dir das ja weiter.

Ja, vielen dank.

viele Grüße
Nada



Bezug
                        
Bezug
Exponentialfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:46 So 25.09.2005
Autor: BennoO.

Hey..
Jop stimmt!
Viele Grüße Benno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]