matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Exponentialfunktionen
Exponentialfunktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktionen: Begründung
Status: (Frage) beantwortet Status 
Datum: 19:42 Di 28.11.2006
Autor: Melli1988

Aufgabe
Entscheiden sie ob für die Funktion f mit f(x)= [mm] a*3^x, [/mm] a aus den reelen Zahlen die folgenden Aussagen richtig, falsch oder nicht entscheidbar sind. Geben sie jeweils eine Begründung an.

1. Ist g(x) [mm] =a*b^x [/mm] mit b>3 so gilt stets g(x)>f(x).
2. Für den Funktionswert f(x+2) gilt immer: [mm] f(x+2)=3^2*f(x). [/mm]
3. Für den Funktionswert f(2x) gilt immer: [mm] f(2x)=(f(x))^2 [/mm]
4. Zum an der y-Achse gespiegelten Graphen der Funktion f existiert ebenfalls eine Funktion. Dies ist die Funktion h mit [mm] h(x)=a*(-3)^x [/mm]

Sooo, ich hab das in meinem Mathebuch gefunden. Ich hab versucht mir selbst Begründungen dafür zu geben, aber habe einfach keine stichhaltigen gefunden...


Ist hier jemand der mir da weiterhelfen kann?

Liebe Grüße, Melli

        
Bezug
Exponentialfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Di 28.11.2006
Autor: M.Rex

Hallo Melli

> Entscheiden sie ob für die Funktion f mit f(x)= [mm]a*3^x,[/mm] a
> aus den reelen Zahlen die folgenden Aussagen richtig,
> falsch oder nicht entscheidbar sind. Geben sie jeweils eine
> Begründung an.
>  
> 1. Ist g(x) [mm]=a*b^x[/mm] mit b>3 so gilt stets g(x)>f(x).

Schreib das doch mal hin.

[mm] a*\underbrace{b}_{>3}^{x}>a*3^{x} [/mm]
[mm] \gdw b^{x}>3^{x} [/mm]

Jetzt mach am besten eine Falluterscheidung:
ist x>0, so gilt:

b>3, was ja die Bedingung ist.

Ist x<0, so gilt:

[mm] b^{x}>3^{x} [/mm] nach Voraussetzung oben.
Aber jetzt:
[mm] \bruch{1}{b^{-x}}>\bruch{1}{3^{-x}} [/mm]

-x ist nun ja >0, also passt die Aussage für x<0 nicht mehr.

Gegenbeispiel:
[mm] \bruch{1}{16}=\bruch{1}{4²}\not{>}\bruch{1}{3²}=\bruch{1}{9} [/mm]

>  2. Für den Funktionswert f(x+2) gilt immer:
> [mm]f(x+2)=3^2*f(x).[/mm]

Schreib doch mal f(x+2) hin:
[mm] f(x+2)=a*3^{x+2} [/mm] und wende jetzt die Potenzgesetze an. Kommst du auf [mm] \underbrace{3²*a*3^{x}}_{=3²*f(x)}? [/mm]

>  3. Für den Funktionswert f(2x) gilt immer: [mm]f(2x)=(f(x))^2[/mm]

Selbe Prinzip wie Aufgabe 2.

ist [mm] f(2x)=a*e^{2x}=(f(x))²? [/mm]

>  4. Zum an der y-Achse gespiegelten Graphen der Funktion f
> existiert ebenfalls eine Funktion. Dies ist die Funktion h
> mit [mm]h(x)=a*(-3)^x[/mm]

Probieren:
Für die Achsensymmetrie zur x-Achse gilt ja:
f(-x)=f(x)

Und ein wenig weiterüberlegen. Was muss den jetzt gelten? Kannst du das Prüfen?

[...]

> Liebe Grüße, Melli

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]