matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisExponentialfunktion skizzieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Exponentialfunktion skizzieren
Exponentialfunktion skizzieren < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion skizzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 So 10.01.2010
Autor: JulianTa

Aufgabe
Skizzieren Sie die Menge [mm] {\exp(it); 0 \le t \le 2\pi}. [/mm]

Hallo zusammen!
Ich hab mir so ein paar Gedanken gemacht und mir war erst völlig unklar, wie ich denn ne komplexe Funktion mal eben "skizzieren" soll. Jetzt bin ich schon mal so weit, dass ich nur die Menge (ok, steht auch in der Aufgabenstellung so...) skizziere.
Dafür hab ich [mm] \exp(it) [/mm] umgeformt in [mm] \cos(t) [/mm] + i [mm] \cdot \sin(t). [/mm] (Der Beweis ist hier grad nicht so wichtig.
Dann einfach für verschiedene t (ich bin mal in [mm] \frac{\pi}{4} [/mm] - Schritten gegangen) gucken, welche Punkte [mm] \cos(t) [/mm] + i [mm] \cdot \sin(t) [/mm] liefert und nur diese Punkte in die komplexe Ebene zeichnen.
Herausgekommen ist bei mir jetzt der Einheitskreis.
Ich bin mir aber noch ein wenig unsicher, ob das wirklich so die Lösung der Aufgabe ist.
Bin ich fertig?

Danke schonmal!
julianta

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialfunktion skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 So 10.01.2010
Autor: kuemmelsche

Guten Morgen,

> Skizzieren Sie die Menge [mm]{\exp(it); 0 \le t \le 2\pi}.[/mm]
>  
> Hallo zusammen!
>  Ich hab mir so ein paar Gedanken gemacht und mir war erst
> völlig unklar, wie ich denn ne komplexe Funktion mal eben
> "skizzieren" soll. Jetzt bin ich schon mal so weit, dass
> ich nur die Menge (ok, steht auch in der Aufgabenstellung
> so...) skizziere.
>  Dafür hab ich [mm]\exp(it)[/mm] umgeformt in [mm]\cos(t)[/mm] + i [mm]\cdot \sin(t).[/mm]
> (Der Beweis ist hier grad nicht so wichtig).

Ich denke nicht, dass das überhaupt bewiesen werden muss. Das ergibt sich aus der Definition!

>  Dann einfach für verschiedene t (ich bin mal in
> [mm]\frac{\pi}{4}[/mm] - Schritten gegangen) gucken, welche Punkte
> [mm]\cos(t)[/mm] + i [mm]\cdot \sin(t)[/mm] liefert und nur diese Punkte in
> die komplexe Ebene zeichnen.
>  Herausgekommen ist bei mir jetzt der Einheitskreis.  [ok]
>  Ich bin mir aber noch ein wenig unsicher, ob das wirklich
> so die Lösung der Aufgabe ist.
>  Bin ich fertig?

Ja, du bist fertig.

Von was du dich sehr leicht überzeugen kannst, ist dass [mm] $|e^{it}|=1,$ $\forall [/mm] t [mm] \in \IR$. [/mm]

Du kennst doch bestimmt das übertragen von dem [mm] $\IR^2$ [/mm] in die Gaußsche Zahlenebene bzw. andersherum. [mm] $\vektor{x \\ y} \mapsto [/mm] x + iy$.
Ich weiß nicht ob du das schon hattest, aber [mm] $\vektor{cos(t) \\ sin(t)}$ [/mm] parametrisiert gerade den Einheitskreis.

lg Kai



Bezug
                
Bezug
Exponentialfunktion skizzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:00 So 10.01.2010
Autor: JulianTa

Danke! Dann hab ichs verstanden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]