matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisExponentialfunktion kurvenscha
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Exponentialfunktion kurvenscha
Exponentialfunktion kurvenscha < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion kurvenscha: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:48 Do 17.02.2005
Autor: sepp28

Hallo habe zu mrogen diese Aufgabe hier auf,
ich stell die dir mal kurz
[mm] fx=(x³+2x²)*e^x [/mm]
begründe dass die folgende die gesuchte stammfunktion ist
[mm] F(x)=(x³-x²+2x-2)*e^x [/mm]


c)für k €R sei [mm] fk(x)=x³+kx²)*e^x [/mm]
bestimme die gemeinsamen schnittpunkte der graphen aller funktionen fk, k€R und untersuche den graphen von fk an der stele 0 in abghängigkeit von k€R

Sorry das es so spät ist aber habe das forum erst heute gefunden

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialfunktion kurvenscha: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Do 17.02.2005
Autor: Zwerglein

Hi, sepp,

Frage 1 schaffst Du selbst mit folgendem Tipp: Leite F(x) ab und Du wirst erkennen, dass rauskommt: F'(x)=f(x).

Nimm k1 [mm] \not= [/mm] k2 und setze die zugehörigen Funktionsterme gleich.
Da [mm] e^{x} [/mm] nicht null werden kann, bleibt:
[mm] x^{3}+k1*x^{2} [/mm] = [mm] x^{3}+k2*x^{2} [/mm]
woraus wiederum folgt: [mm] k1*x^{2} [/mm] = [mm] k2*x^{2} [/mm]
Wegen k1 [mm] \not= [/mm] k2 folgt: x=0.
Es gibt also nur einen gemeinsamen Punkt aller Graphen, und zwar S(0;0).

Die Zusatzfrage ist nicht so ganz eindeutig. Jedenfalls hat die Funktion für k=0 bei x=0 eine dreifache Nullstelle (Terrassenpunkt); für [mm] k\not=0 [/mm] eine doppelte (Extrempunkt). Evtl. musst Du noch nachweisen, welcher Art der Extrempunkt für k>0 bzw. k<0 ist (k>0: TP; k<0: HP).

Falls noch was unklar ist, oder ich mich vertan habe: Rückfrage!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]