matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialfunktion - 2 Punkte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Exponentialfunktion - 2 Punkte
Exponentialfunktion - 2 Punkte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion - 2 Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Di 10.10.2006
Autor: Quaeck

Aufgabe
Der Graph der Exponentialfunktion f mit [mm]f(x)=c * a^x[/mm] geht durch die Punkte P und Q.
Berechenen Sie c und a.

P(1/1), Q(2/2)

So ich habe jetzt mal versucht diese Aufgabe zu lösen:
P(1/1)
[mm]f(x)=c * a^x[/mm]
[mm]f(1)=c * a^1=1[/mm]

und Q(2/2)
[mm]f(x)=c * a^x[/mm]
[mm]f(2)=c* a^2=2[/mm]

Und hier hackt es jetzt schon bei mir. Also ich weiss nicht wie ich jetzt weitervorgehen sollte. Viellicht kann mir ja jemand auf die Sprünge helfen, wäre sehr nett..

        
Bezug
Exponentialfunktion - 2 Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Di 10.10.2006
Autor: Herby

Hallo Quaeck,


was gibt denn alles 1 ?


[mm] \bruch{8}{8}=1 [/mm]

[mm] \bruch{3}{3}=1 [/mm]

[mm] \bruch{\pi}{\pi}=1 [/mm]



reicht dir das?


Liebe Grüße
Herby

Bezug
                
Bezug
Exponentialfunktion - 2 Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Di 10.10.2006
Autor: Quaeck

Also deine Antwort bezieht sich jetzt bestimmt auf die zwei gleichen X und Y Punkte, doch meine Frage geht eher in Richtung Rechnungsweg, denn ich habe in meinem Buch noch andere Aufgaben, wobei leider keine Punkte P(2/2) und Q(1/1), so "homolog" vorhanden sind..
Danke für deine Antwort, aber wenn du mich so fragst reicht mir das für mein Verständnis noch nicht. Doch vieleicht hab ich deine Antwort auch falsch verstanden..?

Bezug
                        
Bezug
Exponentialfunktion - 2 Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Di 10.10.2006
Autor: Herby

Hi,

> Also deine Antwort bezieht sich jetzt bestimmt auf die zwei
> gleichen X und Y Punkte, doch meine Frage geht eher in
> Richtung Rechnungsweg, denn ich habe in meinem Buch noch
> andere Aufgaben, wobei leider keine Punkte P(2/2) und
> Q(1/1), so "homolog" vorhanden sind..
>  Danke für deine Antwort, aber wenn du mich so fragst
> reicht mir das für mein Verständnis noch nicht. Doch
> vieleicht hab ich deine Antwort auch falsch verstanden..?


ok. genauer:


du suchst a und c und du weißt dass [mm] \bruch{a}{a}=1 [/mm] ist;

dann muss [mm] c*a^1=c*a=\bruch{a}{a}=1 [/mm] sein [Hinweis: P(1|1)] und das heißt [mm] c=\bruch{1}{a} [/mm]


wenn du das nun in die zweite Gleichung einsetzt, kannst du a ermitteln und daraus dann c.


so besser?



Liebe Grüße
Herby

Bezug
        
Bezug
Exponentialfunktion - 2 Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Di 10.10.2006
Autor: Quaeck

Ja, das ist viel besser, damit kann ich weiter arbeiten. Dankeschön! =)

Bezug
        
Bezug
Exponentialfunktion - 2 Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Mi 11.10.2006
Autor: Quaeck

Ich muss nochmal was los werden, dass bei meinen Rechnungen herausgekommen ist und das mir ein bisschen unschlüssig ist.

Also ich habe das jetzt mal persönlich nach meinem Verständnis folgender Maßen ausgerechnet:

P (1/1)
[mm]f(x)=c * a^x[/mm]
[mm]f(1)=c \cdot{} a^1=1[/mm]

[mm]c * a^1=1 | :a[/mm]
[mm]c= \bruch{1}{a}[/mm]


Q (2/2)
[mm]f(x)=c * a^x[/mm]
[mm]f(2)=c \cdot{} a^2=2[/mm]

[mm]c \cdot{} a^2=2[/mm]
[mm](\bruch{1}{a}) * a^2=2[/mm]
[mm]a^-^1 * a^2=2[/mm]
[mm]a^1=2[/mm]

So sieht meine Exponentialfunktion nun aus..
[mm]f(x)= \bruch{1}{2} * 2^x[/mm]


Doch den Lösungsweg den wir auf einem Zettel ausgeteilt bekamen ist folgende Lösung zu finden:

P (1/1) , Q (2/2) , [mm]f(x)=c * a^x[/mm]
[mm]f(1)=c \cdot{} a^1=1[/mm]
[mm]f(2)=c \cdot{} a^2=2[/mm]
------------------------------------------
[mm] a^2^-^1=2-1[/mm]
[mm] a^1 =1[/mm]

Q -> [mm]f(1)=c \cdot{} 1^2=2[/mm]
        [mm]c * 1=2[/mm]
        [mm]c =2[/mm]

Exponentialfunktion: [mm]f(x)= 2 * 1^x[/mm]

Welche Lösung ist jetzt richtig?


Bezug
                
Bezug
Exponentialfunktion - 2 Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Mi 11.10.2006
Autor: VNV_Tommy

Hallo Quaeck!

> Ich muss nochmal was los werden, dass bei meinen Rechnungen
> herausgekommen ist und das mir ein bisschen unschlüssig
> ist.
>  
> Also ich habe das jetzt mal persönlich nach meinem
> Verständnis folgender Maßen ausgerechnet:
>  
> P (1/1)
>  [mm]f(x)=c * a^x[/mm]
>  [mm]f(1)=c \cdot{} a^1=1[/mm]
>  
> [mm]c * a^1=1 | :a[/mm]
>  [mm]c= \bruch{1}{a}[/mm]
>  
>
> Q (2/2)
>  [mm]f(x)=c * a^x[/mm]
>  [mm]f(2)=c \cdot{} a^2=2[/mm]
>  
> [mm]c \cdot{} a^2=2[/mm]
>  [mm](\bruch{1}{a}) * a^2=2[/mm]
>  [mm]a^-^1 * a^2=2[/mm]
>  
> [mm]a^1=2[/mm]
>  
> So sieht meine Exponentialfunktion nun aus..
>  [mm]f(x)= \bruch{1}{2} * 2^x[/mm]
>  
>
> Doch den Lösungsweg den wir auf einem Zettel ausgeteilt
> bekamen ist folgende Lösung zu finden:
>  
> P (1/1) , Q (2/2) , [mm]f(x)=c * a^x[/mm]
>  [mm]f(1)=c \cdot{} a^1=1[/mm]
>  
> [mm]f(2)=c \cdot{} a^2=2[/mm]
>  
> ------------------------------------------
>  [mm]a^2^-^1=\red{2-1}[/mm]
>  [mm]a^1 =1[/mm]
>  
> Q -> [mm]f(1)=c \cdot{} 1^2=2[/mm]
>          [mm]c * 1=2[/mm]
>          [mm]c =2[/mm]
>  
> Exponentialfunktion: [mm]f(x)= 2 * 1^x[/mm]
>  
> Welche Lösung ist jetzt richtig?

Setz doch mal die gegebenen Punkte P und Q in die beiden vermeintlichen Lösungen ein und du wirst sehen, welche davon die richtige ist: die richtige Lösung erzeugt nämlich beim einsetzen der Punkte jedes mal eine wahre Aussage.
Um es kurz zu machen: dort wo ich [mm] \red{rot} [/mm] makiert habe ist ein gravierender Fehler aufgetreten. So wie es scheint wurden, um auf diese Gleichung zu kommen, die beiden Gleichungen miteinander dividiert (was durchaus zulässig ist, da sich dann das c rauskürzen lässt). Allerdings sollte man dann auch auf beiden Seiten dividieren und nich nur auf einer. Der Fehler besteht also darin, daß die linken Seiten der Gleichungen dividiert, die rechten Seiten jedoch subtrahiert wurden.

Deine Lösung ist somit richtig, die auf dem ausgeteilten Zettel ist falsch.

Gruß,
Tommy

Bezug
                
Bezug
Exponentialfunktion - 2 Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Mi 11.10.2006
Autor: smarty

Hallo,



eure Lösung ist richtig - Mist, ich war zu langsam, weil ich gerade mit den Blöcken gespielt habe [grins]



guck mal, die Lösung auf dem Zettel geht gar nicht durch P(1|1)


[Dateianhang nicht öffentlich]





Gruß
Smarty

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
        
Bezug
Exponentialfunktion - 2 Punkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Mi 11.10.2006
Autor: Quaeck

Hi VNV_Tommy, hi smarty
Dankeschön für eure Mühe.
Die Lösungen auf meinem Zettel sind allerdings von Schülern wie ich das gerade festgestellt habe, also das wird dann warscheinlich in der nächsten Mathestd. berichtigt werden.
Nochmals danke. =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]