matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenExponentialfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Exponentialfunktion
Exponentialfunktion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 So 27.01.2013
Autor: Blackburn4717537

Hallo,

in unserer Vorlesung wurde gesagt, dass die Partialsumme [mm] \summe_{k=0}^{n}\bruch{1}{k!} [/mm] sehr schnell gegen e konvergiert.
Es gilt nämlich für die Folge [mm] R_{n+1} [/mm] := e - [mm] \summe_{k=0}^{n}\bruch{1}{k!} [/mm] = [mm] \summe_{k=n+1}^{\infty}\bruch{1}{k!}: R_n [/mm] = [mm] O(\bruch{1}{n!}). [/mm] (Bis hierhin habe ich alles verstanden)

(Jetzt kommt der Teil, der mir unklar ist)
Dann wurde die Behauptung aufgestellt, dass [mm] (1+\bruch{1}{n})^n [/mm] langsam gegen e konvergiert. Man könnte nämlich beweisen, dass e - [mm] (1+\bruch{1}{n})^n \sim \bruch{e}{2n} [/mm] (also, dass beide Folgen asymptotisch sind), und somit insbesondere gilt: e - [mm] (1+\bruch{1}{n})^n [/mm] = [mm] O(\bruch{1}{n}). [/mm]
Ich habe versucht, das zu beweisen, komme aber überhaupt nicht zurecht.

Grüsse
Alexander

EDIT: Dann noch eine Frage am Rande, die nichts mit oben zu tun hat: Was ist mit den ,,fünf komplexen Wurzeln von 1" gemeint?

        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 So 27.01.2013
Autor: abakus



> Hallo,
>  
> in unserer Vorlesung wurde gesagt, dass die Partialsumme
> [mm]\summe_{k=0}^{n}\bruch{1}{k!}[/mm] sehr schnell gegen e
> konvergiert.
>  Es gilt nämlich für die Folge [mm]R_{n+1}[/mm] := e -
> [mm]\summe_{k=0}^{n}\bruch{1}{k!}[/mm] =
> [mm]\summe_{k=n+1}^{\infty}\bruch{1}{k!}: R_n[/mm] =
> [mm]O(\bruch{1}{n!}).[/mm] (Bis hierhin habe ich alles verstanden)
>  
> (Jetzt kommt der Teil, der mir unklar ist)
>  Dann wurde die Behauptung aufgestellt, dass
> [mm](1+\bruch{1}{n})^n[/mm] langsam gegen e konvergiert. Man könnte
> nämlich beweisen, dass e - [mm](1+\bruch{1}{n})^n \sim \bruch{e}{2n}[/mm]
> (also, dass beide Folgen asymptotisch sind), und somit
> insbesondere gilt: e - [mm](1+\bruch{1}{n})^n[/mm] =
> [mm]O(\bruch{1}{n}).[/mm]
>  Ich habe versucht, das zu beweisen, komme aber überhaupt
> nicht zurecht.

Hallo, vielleicht hilft es, die ersten drei bis vier Summanden von [mm] $(1+\bruch{1}{n})^n$ [/mm] zu berechnen, wenn du [mm] $(1+\bruch{1}{n})^n$ [/mm] nach dem binomischen Satz ausmultiplizierst.
Dann kannst du diese ersten Summanden mit den ersten Summanden der Reihenentwicklung von e vergleichen.

>  
> Grüsse
>  Alexander
>  
> EDIT: Dann noch eine Frage am Rande, die nichts mit oben zu
> tun hat: Was ist mit den ,,fünf komplexen Wurzeln von 1"
> gemeint?

Das sind die 5 verschiedenen komplexen Zahlen z, für die [mm] $z^5=1$ [/mm] gilt.
Eine von ihnen ist 1, eine zweite ist cos(72°)+i*sin(72°)
(siehe Formel von Moivre).

Bezug
                
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 Di 29.01.2013
Autor: Blackburn4717537


>  Hallo, vielleicht hilft es, die ersten drei bis vier
> Summanden von [mm](1+\bruch{1}{n})^n[/mm] zu berechnen, wenn du
> [mm](1+\bruch{1}{n})^n[/mm] nach dem binomischen Satz
> ausmultiplizierst.
>  Dann kannst du diese ersten Summanden mit den ersten
> Summanden der Reihenentwicklung von e vergleichen.

Ich habe deinen Lösungsansatz versucht, aber so recht habe ich jetzt nicht gesehen, wie mich das weiterbringen könnte. Mein Prof meinte, man bräuchte dazu, dass log(1+x) = x - [mm] \bruch{x^2}{2} [/mm] + [mm] o(x^2) [/mm] für x [mm] \to [/mm] 0 ist, aber das werden wir erst später noch beweisen.

>  Das sind die 5 verschiedenen komplexen Zahlen z, für die
> [mm]z^5=1[/mm] gilt.
>  Eine von ihnen ist 1, eine zweite ist
> cos(72°)+i*sin(72°)
>  (siehe Formel von Moivre).

Ok danke. Wir hatten heute aber auch erst in der Vorlesung definiert, was die n-te Wurzel aus einer komplexen Zahl ist.

Gruss
Alexander

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]