matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Exponentialfunktion
Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:20 Do 20.05.2010
Autor: manolya

Aufgabe
Wie hilft mir diese Formel weiter?

Hallo alle zusammen,

Also mit dieser Formel [mm] f(x)=a*e^{kt} [/mm] kann ich exponentiellen Wachstum berechnen, z.B. : Die Vervielfachung von Viren binnen Stunden.

Der rechnerische Weg: n(t)= n0 * [mm] 10^{(t/5h)} [/mm]
                      n(t)= n0 [mm] *(e^{ln(10)})^{(t/5h)} [/mm]
                      n(t)= n0 * [mm] e^{ln(10)*(t/5h)} [/mm]
                      n(t)= n0 * [mm] e^{ln(10)/5h)*t)} [/mm]
                  
k = ln(10)/5=0,4605
                
[mm] n(t)=500*e^{0,4605t} [/mm]


So, ich verstehe die aufeinanderfolgenden Schritte, aber ich kann die Stelle ,wo das "e" eingesetzt wird , nicht nachvollziehen.

Wäre wirklich dringend auf Eure Hilfe angewiesen.

LG

        
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Do 20.05.2010
Autor: manolya

Vielleicht wäre es hilfreicht wenn ich noch folgende Angaben gebe:

Alle 5 STunden verzehnfacht sich die Zahl von anfänglich 500 Viren.
Das exponentielle Wachstum sooll mit Hilfe der e-Funktion dargestellt werden.

n(t)= die Anzahl der Viren
t   = gemessen in Stunden

Bezug
        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 20.05.2010
Autor: leduart

Hallo
eigentlich kann man Wachstumsprozesse oder Zerfallsgesetze mit jeder Grundzahl a beschreiben.
also etwa, wenn sich etwas in der zeit td verdoppelt :
n(t)=n(0)*2^|t/td)
wenn es sich in der Zeit tv vervierfacht,
[mm] n(t)=n(0)*4^{t/tv} [/mm] usw, bei dir hat es sich in 5h verzehnfacht, also [mm] n(t)=n(0)*10^{t/5h} [/mm]

nun sind aber die funktionen [mm] 2^x, 4^x [/mm] usw nicht so gut vertafelt, bzw im Computer, ausserdem ist ihre Ableitung nicht so einfach. Deshalb nimmt man üblicherweise die Grundzahl e, und will [mm] n(t)=n(0)*e^{t/\tau} [/mm]
dann ist [mm] \tau [/mm] die Zeit, in dem es e mal soviel geworden ist, also ungefähr 2,718 mal so viel.
so jetz muss man [mm] 2^x [/mm] oder [mm] 10^x [/mm] oder allgemein [mm] a^x [/mm] umschreiben.
Dazu benutzt man dass [mm] e^{lna}=a [/mm]  wobei lna die Kurzform von
$_eloga$ ist.
dann hat man [mm] 10=e^{ln10} [/mm]   und [mm] 10^r=(e^{ln10})^r=e^{(ln10)*r} [/mm]
jetzt für r dein t/5h eingesetzt, und du hast es hoffentlich verstanden.
dann nennt man den Faktor bei t noch k und hat
[mm] n(t)=n(0)*e^{k*t} [/mm]

damit kannst du k jederzeit ausrechnen, zur Sicherheit noch für die Verdopplung. Die Viren verdoppeln sich in 3Min
also [mm] n(t)=n(0)*2^{t/3min} [/mm]
[mm] 2=e^{ln2} [/mm]
[mm] 2^{t/3min}=e^{ln2*(t/3min)} [/mm]
k=ln2/3min=0.23/min
und damit [mm] n(t)=n(09*e^{0.23/min*t} [/mm]
jetzt klar?
Gruss leduart

Bezug
                
Bezug
Exponentialfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:28 Do 20.05.2010
Autor: manolya

Dies habe ich jetzt einigermaßen (hoffentlich) verstanden.

Wie muss ich dann bei deiser aufgabe vorangehen:

Die Bevölkerung wächst exponentiell. IIM Jahre 2000 gab es 4.000.000.000 Menschen,im Jahre 2010 gab es 4.100.000.000.
Wie viele Menschen wird es im Jahr 3000 gebe,wie viele gab es bei der Geburt Jesu und wann gab es genau 2 Menschen?  :(

Bezug
                        
Bezug
Exponentialfunktion: Hinweise
Status: (Antwort) fertig Status 
Datum: 21:34 Do 20.05.2010
Autor: Loddar

Hallo manolya!


Es ist wieder "nur" die Wachstumsformel:
$$N(t) \ = \ [mm] N_0*e^{k*t}$$ [/mm]
Wählen wir uns ein Bezugsjahr, z.B. 2000, dann ergibt sich:
[mm] $$N(t_0=0) [/mm] \ = \ [mm] N_0*e^{k*0} [/mm] \ = \ 4.000.000.000$$

Nun setzen wir auch das andere Wertepaar ein:
[mm] $$N(t_1=10) [/mm] \ = [mm] N_0*e^{k*10} [/mm] \ = \ 4.100.000.000$$
Daraus lassen sich nun [mm] $N_0$ [/mm] und $k_$ ermitteln.


Gruß
Loddar


Bezug
                                
Bezug
Exponentialfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:57 Do 20.05.2010
Autor: manolya

und wie:(:(

Bezug
                                        
Bezug
Exponentialfunktion: mitmachen!
Status: (Antwort) fertig Status 
Datum: 22:04 Do 20.05.2010
Autor: Loddar

Hallo manolya!


Ein bisschen mitmachen musst Du schon hier ...


Aus der ersten Gleichung lässt sich [mm] $N_0$ [/mm] doch quasi ablesen. Setze dies in die 2. Gleichung ein und stelle nach $k \ = \ ...$ um (Stichwort: MBLogarithmus).


Gruß
Loddar


Bezug
                                                
Bezug
Exponentialfunktion: Idee
Status: (Frage) beantwortet Status 
Datum: 22:16 Do 20.05.2010
Autor: manolya

[mm] f(x)=N0*e^{k*10} [/mm]  |ln ?

aber was brigt mir das

Bezug
                                                        
Bezug
Exponentialfunktion: Tipps befolgen und rechnen
Status: (Antwort) fertig Status 
Datum: 22:26 Do 20.05.2010
Autor: Loddar

Hallo manolya!


Du musst aber auch gegebene Tipps befolgen!

Ist dies die korrekte zweite Gleichung? Nein, denn da fehlt das bekannte Ergebnis.

Und den Wert für [mm] $N_0$ [/mm] hast Du auch nicht eingesetzt.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]