matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieExponentialfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Exponentialfunktion
Exponentialfunktion < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Sa 09.01.2010
Autor: Wurzel2

Aufgabe
Zwei Mathematikstudenten (A und B) lösen zwei Mathematikaufgaben im Team. Aufgabe 1 ist leicht: A (bzw. B) wird eine Zeit brauchen, die exponentialverteilt mit Erwartungswert 3 Minuten (bzw. 5 Minuten) ist. Die Aufgabe gilt als gelöst, wenn einer von beiden auf die richtige Idee gekommen ist.
Bei Aufgabe 2 ist es schwieriger, diesmal sind die Erwartungswerte der Knobeldauer 10 Minuten bzw. 20 Minuten. Auch diesmal gilt die Aufgabe als gelöst, wenn einer von beiden auf die richtige Idee gekommen ist.
Bestimmen Sie die Wahrscheinlichkeit, dass die beiden weiniger als 15 Minuten zu tun haben.
(Wir wollen annehmen, dass beide zunächst Aufgabe 1 bearbeiten und unmittelbar danach beide Aufgabe 2)

Hallo.

Im Tutorium wurde noch gesagt, dass beide Studenten natürlich unabhängig voneinander denken. Außerdem wurde der Tipp gegeben, dass man das Minimum und die Summe von Exponentialverteilten ZV kombinieren muss.

Ich habe mich zuerst daran gesetzt und überlegt wie lange beide wohl an Aufgabe 1 sitzen werden und bin zu dem Schluss gekommen, dass sie mit einer W-keit von 25,74% weniger als 8 Minuten brauchen werden. Die 8 Minuten habe ich aus der Summe der EW für beide Studenten aus Aufgabe 1. Wobei ich mir nicht so sicher bin, ob ich das überhaupt machen durfte. Für die Aufgabe 2 bin ich analog vorgegangen und habe dort raus, dass beide mit einer W-keit von 26,18% weniger als 30 Minuten für diese Aufgabe brauchen.
Nun habe ich mich an die Summe gesetzt und wollte die W-keit ausrechnen, dass beide weniger als 15 Minuten insgesammt brauchen.
Aber ab da wurde ich stutzig und wusste nicht mehr weiter. Außerdem habe ich mich gefragt ob es überhaupt nötig war/ist das  Minimum für Aufgabe 1 und 2 zu berechnen.
Ich hoffe mir kann jemand einen Tipp geben wie man eigentlich richtig vorgeht.
Danke im Voraus.

        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 So 10.01.2010
Autor: tvod

Ich denke, dass Du das Minimum der ZVen und nicht ihre Summe (oder die ihrer Erwartungswerte; mir ist nicht ganz klar, was Du da gemacht hast) ausrechnen musst, wenn Du wissen willst, wie lange die beiden für eine der beiden Aufgaben brauchen; eine Aufgabe ist schließlich gelöst, sobald einer fertig ist.

Bei der Summe addierst Du ja die beiden Wartezeiten, d.h. da bekommst Du die Verteilung dafür, dass die beiden die Aufgabe nacheinander bearbeiten statt "beide-starten-gleichzeitig-und-stoppen-wenn-der-erste-fertig-ist".

Ich denke, da ist insgesamt [mm] P(min(A1,B1)+min(A2,B2)\le15) [/mm]  gefragt.

(Mit ZVen A1="Zeit, die Student A für Aufgabe 1 braucht", .., B2="Zeit, die Student B für Aufgabe 2 braucht")

Bezug
                
Bezug
Exponentialfunktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:17 Mo 11.01.2010
Autor: Wurzel2

Hallo.

Danke für deine Antwort. Ich hatte schon Angst, dass mir keiner weiterhelfen kann.

Also Schritt für Schritt:
Sei Y:={min(A1,B1)} Dann  muss ich doch P(Y[mm]\le[/mm]b)=(1-e^(-[mm]\lambda_1[/mm]*b))*(1-e^(-[mm]\lambda_2[/mm]*b)) rechnen. Dann habe ich dass Maximum raus, d.h. die Wkeit wann beide mit der Aufgabe fertig sind. Da aber die Aufgabe gelöst ist, wenn nur einer schon auf die richtige Lösung gekommen ist rechne ich nun noch einmal 1-P(Y[mm]\le[/mm]b). Richtig?
Nur was ist mein b? Muss ich hier die EW für die erste Aufgabe aus der Aufgabenstellung addieren, sprich 8 Minuten? Also b=8?

Vielleicht bis hier erst einmal einen Tipp bitte und dann mach ich weiter.

Danke im Voraus.

Bezug
                        
Bezug
Exponentialfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 13.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]