matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenExponentialansatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - Exponentialansatz
Exponentialansatz < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialansatz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:00 So 25.11.2012
Autor: guitarhero

Aufgabe
Bestimmen Sie drei Lösungen der hyperbolischen Differentialgleichung
[mm] u_{xx} [/mm] - [mm] u_{yy} [/mm] = - u - 2 [mm] u_{x} [/mm]

über den Exponentialansatz
u(x,y) = [mm] e^{\alpha x + \beta y} [/mm] , [mm] \alpha, \beta \in [/mm] R

Bemerkung: Der Exponentialansatz ist ein spezieller Produktansatz wegen [mm] e^{\alpha x + \beta y} [/mm] = [mm] e^{\alpha x} [/mm] * [mm] e^{\beta y} [/mm]

Hallo matheraum,

bei mir hängts bei dieser Aufgabe. Alles, was ich über google zu Exponentialansatz gefunden habe, war die Methode mit dem [mm] e^{\lambda x}, [/mm] aber das ist hier ja anders. Habe es dann so probiert, wie es in einer anderen Aufgabe vorher war mit dem Produktansatz

[mm] u(x,y)=e^{\alpha x + \beta y} [/mm]
[mm] u_{x}=\alpha e^{\alpha x + \beta y} [/mm]
[mm] u_{xx}=(\alpha)^{2} e^{\alpha x + \beta y} [/mm]
[mm] u_{y}=\beta e^{\alpha x + \beta y} [/mm]
[mm] u_{yy}=(\beta)^{2} e^{\alpha x + \beta y} [/mm]

Einsetzen in Dgl:
[mm] u_{xx}=(\alpha)^{2} e^{\alpha x + \beta y} [/mm] - [mm] (\beta)^{2} e^{\alpha x + \beta y} [/mm] = - [mm] e^{\alpha x + \beta y} [/mm] - 2 [mm] \alpha e^{\alpha x + \beta y} [/mm]


Wenn ich da nun die Exponentialfunktion rauskürze, komme ich auf
[mm] (\alpha)^{2} [/mm] - [mm] (\beta)^2 [/mm] = -1 [mm] -2\alpha [/mm]
Was fange ich damit aber nun an?
Muss ich das nun wie beim Produktansatz nach [mm] \alpha [/mm] und [mm] \beta [/mm] ordnen und dann gleich einer Konstanten setzen? Da [mm] \alpha [/mm] und [mm] \beta [/mm] ja aber selbst nur Konstanten sind, macht das nicht so viel Sinn, oder?

Ich hoffe, ich finde hier Hilfe :-)

Gruß,
guitarhero

        
Bezug
Exponentialansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Fr 30.11.2012
Autor: guitarhero

Frage hat sich geklärt, bin noch auf das Ergebnis gekommen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]