matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenExistenzintervall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Existenzintervall
Existenzintervall < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenzintervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Do 30.06.2011
Autor: hannahmaontana

Aufgabe
Bestimme maximales Existenzintervall, der Lösung des AWP

[mm] u'=\bruch{1}{4t^{2}}+u^{2}, [/mm]   u(1)=0

Tritt blow-up auf?

Ich weiß nicht, auf welchem Weg ich zu dieser DGL eine Lösung bestimmen kann. TdV geht nicht wegen dem [mm] t^2, [/mm] VdK geht nicht wegen dem Quadrat vom u, und Bernoulli geht auch nicht, weil vor dem [mm] \bruch{1}{4t^{2}} [/mm] kein u steht.

Ich weiß nicht, was sonst klappen könnte.
Danke für eure Hilfe.

        
Bezug
Existenzintervall: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Do 30.06.2011
Autor: MathePower

Hallo hannahmaontana,

> Bestimme maximales Existenzintervall, der Lösung des AWP
>  
> [mm]u'=\bruch{1}{4t^{2}}+u^{2},[/mm]   u(1)=0
>  
> Tritt blow-up auf?
>  Ich weiß nicht, auf welchem Weg ich zu dieser DGL eine
> Lösung bestimmen kann. TdV geht nicht wegen dem [mm]t^2,[/mm] VdK
> geht nicht wegen dem Quadrat vom u, und Bernoulli geht auch
> nicht, weil vor dem [mm]\bruch{1}{4t^{2}}[/mm] kein u steht.
>  
> Ich weiß nicht, was sonst klappen könnte.


Das ist eine sogenannte Riccatische Differentialgleichung.

Eine Lösung ist hier nur möglich, wenn ein
partikuläres Integral [mm]u_{p}[/mm] gefunden werden kann.

Dann kann mit der Substitution

[mm]u=u_{p}+\bruch{1}{z}[/mm]

die zweite Lösung ermittelt werden.

Auf Grund der Gleichungsform kann zur Bestimmung eines
partikulären Integrals mit dem Ansatz

[mm]u_{p}\left(t\right)=\bruch{A}{x}[/mm]

probiert werden.


>  Danke für eure Hilfe.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]