matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungExistenz von Eigenwert 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Existenz von Eigenwert
Existenz von Eigenwert < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz von Eigenwert : a,b als variablen in Matrix
Status: (Frage) beantwortet Status 
Datum: 13:00 Do 25.08.2005
Autor: panzer

Hi!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hab folgendes Probelm, habe hier eine Matrix, die folgendermaßen aussieht

[mm] \pmat{ 0 & a \\ b & 0 } [/mm]

Ich soll jetzt as und bs angeben für die es eigenvektoren und Eigenräume gibt, doch ich weiss nicht genau wie ich ansetzten soll. Habe es versucht mit der det ( A- k*e) = 0 , doch da ergibt sich das Problem,dass ich a und b nicht ausrechnen kann, denn ich brauch ja k. Wenn ich jetzt Werte gegebn hätte zu denen ich einen eigenraum und eigenwert ausrechnen müsste angegebn wären,dann wär das kein Problem, nur wie muss ich das jetzt hier machen?

        
Bezug
Existenz von Eigenwert : Char. Polynom
Status: (Antwort) fertig Status 
Datum: 13:19 Do 25.08.2005
Autor: MathePower

Hallo panzer,

[willkommenmr]

>  
> [mm]\pmat{ 0 & a \\ b & 0 }[/mm]
>  
> Ich soll jetzt as und bs angeben für die es eigenvektoren
> und Eigenräume gibt, doch ich weiss nicht genau wie ich
> ansetzten soll. Habe es versucht mit der det ( A- k*e) = 0
> , doch da ergibt sich das Problem,dass ich a und b nicht
> ausrechnen kann, denn ich brauch ja k. Wenn ich jetzt Werte
> gegebn hätte zu denen ich einen eigenraum und eigenwert
> ausrechnen müsste angegebn wären,dann wär das kein Problem,
> nur wie muss ich das jetzt hier machen?

die Eigenwerte kannst Du trotzdem ausrechnen. Diese EWe sind dann von a und b abhängig.

Hast Du diese EWe bestimmt, so mußt Du für jeden EW eine entsprechenden Eigenvektor bestimmen.

Gruß
MathePower

Bezug
                
Bezug
Existenz von Eigenwert : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Do 25.08.2005
Autor: panzer

Die aufgabenstellung lautet für welche a,b hat die Matrix eigenräume und Vektoren. Ist das dann immer noch dasselbe den Eigenvektor von a und b abhängig zu berechnen oder gäb es da noch ne andere Möglichkeit?

Bezug
                        
Bezug
Existenz von Eigenwert : Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Do 25.08.2005
Autor: Julius

Hallo panzer!

Die Frage ist ja, für welche Werte $a$ und $b$ das charakteristische Polynom von $A$ mindestens eine  Nullstelle besitzt.

Das charakteristische Polynom von $A$ lautet wie folgt:

[mm] $CP_A(t) [/mm] = [mm] t^2 [/mm] - ab$.

Dieses Polynom hat genau im Falle $ab [mm] \ge [/mm] 0$ mindestens eine Nullstelle.

Dies ist der Fall wenn [mm] $a\ge [/mm] 0$ und $b [mm] \ge [/mm] 0$ oder wenn $a [mm] \le [/mm] 0$ und $b [mm] \le [/mm] 0$.

Im Falle $ab=0$ ist [mm] $\lambda=0$ [/mm] ein Eigenwert mit algebraischer Vielfachheit $2$, während im Falle $ab>0$ die beiden Eigenwerte [mm] $\lambda_1=\sqrt{ab}$ [/mm] und [mm] $\lambda_2 [/mm] = - [mm] \sqrt{ab}$ [/mm] lauten.

Viele Grüße
Julius

Bezug
                                
Bezug
Existenz von Eigenwert : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:04 Do 25.08.2005
Autor: panzer

danke ich werds mal nach dem muster probieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]