matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreExistenz einer Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Existenz einer Abbildung
Existenz einer Abbildung < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz einer Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Mo 07.12.2009
Autor: Dr.Prof.Niemand

Hi,
ich habe da eine Aussage ohne Beweis, die ich gerne verstehen würde.
Also die Aussage ist: Es existiert eine Abbildung:
[mm] \gamma [/mm] : [mm] \{ \} \to [/mm] N
wobei N eine belibige Menge sei und [mm] \{ \} [/mm] die leere Menge ist.
Also ich würde den Satz so erklären, dass jedes Element der leeren Menge (also keins) auf N abgebildet wird und somit ist dies eine Abbildung.
Aber das ist ja kein handfester Beweis.
Hat da jemand vllt. einen Tipp oder eine Lösung.

LG
Niemand

        
Bezug
Existenz einer Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 07.12.2009
Autor: statler

Hallo!

>  ich habe da eine Aussage ohne Beweis, die ich gerne
> verstehen würde.
>  Also die Aussage ist: Es existiert eine Abbildung:
>  [mm]\gamma[/mm] : [mm]\{ \} \to[/mm] N
>  wobei N eine belibige Menge sei und [mm]\{ \}[/mm] die leere Menge
> ist.

Eine Abb. f: A [mm] \to [/mm] B ist eine Teilmenge von AxB mit gewissen Zusatzeigenschaften.
Zu jedem a [mm] \in [/mm] A gibt es ein (a, b) [mm] \in [/mm] f. Das ist hier erfüllt, weil es solche a's nicht gibt.
Wenn (a, b) [mm] \in [/mm] f und (a, c) [mm] \in [/mm] f, dann ist b = c. Die Voraussetzung ist nie erfüllt, also immer falsch, also ist die Implikation immer wahr.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Existenz einer Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Mo 07.12.2009
Autor: Dr.Prof.Niemand

Hi,
danke für deine Antwort, aber eine Frage habe ich noch dazu:

> Wenn (a, b) [mm]\in[/mm] f und (a, c) [mm]\in[/mm] f, dann ist b = c.

die geordneten Paare (a,b) und (a,c) gibt es ja nicht, wie kommst du da auf b=c und warum beweist das die Existenz der Abbildung?

LG
Niemand

Bezug
                        
Bezug
Existenz einer Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mo 07.12.2009
Autor: statler


> Hi,
>  danke für deine Antwort, aber eine Frage habe ich noch
> dazu:
>  > Wenn (a, b) [mm]\in[/mm] f und (a, c) [mm]\in[/mm] f, dann ist b = c.

>
> die geordneten Paare (a,b) und (a,c) gibt es ja nicht, wie
> kommst du da auf b=c und warum beweist das die Existenz der
> Abbildung?

f ist die leere Menge, und die existiert. Die obige Aussage ist eine 'wenn-dann-Aussage'. die ist jedenfalls immer dann wahr, wenn die Voraussetzung falsch ist, und das ist sie in diesem Fall immer.

Gruß
Dieter

>  
> LG
>  Niemand


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]