matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisExistenz Lebesgue-Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Existenz Lebesgue-Integral
Existenz Lebesgue-Integral < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz Lebesgue-Integral: Aufgabe
Status: (Frage) überfällig Status 
Datum: 12:40 So 26.05.2013
Autor: Richie1401

Aufgabe
Existiert das Lebesguesche Integral
[mm] \int\limits_{\IR^n}||x||^{-||x||}dx [/mm]

Hallo,

nachdem ich mich hier sehr rar gemacht habe, habe ich zu obiger Aufgabe nun mal eine Frage. Ich denke und hoffe ihr könnt mir helfen.

Leider habe ich gar keinen Ansatzpunkt. Für n=1 habe ich es mal in Annäherung ausgerechnet und es scheint zu existieren.

Danach stocke ich aber schon. Mir fällt einfach kein gescheiter Gedanke ein, wie man hier vorgehen könnte.
Fubini ist - so denke ich - allgemein hier auch nicht anwendbar. Das wäre nun noch ein Gedanke, den man eventll in irgendeiner Art und Weise unterbringen könnte.

Sorry, dass ich hier keine Ansätze liefern kann. Ich stehe einfach seit Tagen auf dem Schlauch. Wäre nett, wenn mich jemand runterheben könnte.

Liebe grüße

        
Bezug
Existenz Lebesgue-Integral: Push
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:57 Di 28.05.2013
Autor: Richie1401

Hallo liebe Matheraum-Mitglieder,

dies ist eine Push-Mitteilleung. Sorry, dass ist zu diesem Mittel greife, aber ich bin wirklich noch sehr an einen Lösungshinweis interessiert und würde mich freuen, wenn mir jemand einen Tipp geben kann.

Liebe Grüße!

Bezug
        
Bezug
Existenz Lebesgue-Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Di 28.05.2013
Autor: Lustique

Da ich nicht weiß, ob dir das tatsächlich weiterhilft, da ich gerade auch keine Zeit habe, das selbst zu überprüfen, ich aber trotzdem noch was vorschlagen möchte, kommt das Ganze mal als Mitteilung:

Für Maßraum [mm] $(\Omega, \mathcal{A}, \mu)$ [/mm] und messbare Funktion [mm] $f\colon \Omega \to [/mm] [0, [mm] \infty]$ [/mm] gilt:

[mm] $\int_{\Omega} f\; d\mu [/mm] = [mm] \int_{[0, \infty)} \mu (\{x\in\Omega : f(x)> t\})\;d\lambda^1(t)$. [/mm]  

Hilft das vielleicht weiter?

Bezug
        
Bezug
Existenz Lebesgue-Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 29.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]