matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenExakte Differentialform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Exakte Differentialform
Exakte Differentialform < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exakte Differentialform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:54 Fr 12.06.2015
Autor: DepressiverRoboter

Aufgabe
Beweisen sie, dass die Diferentialform [mm] \bruch{-ydx + xdy}{x^2+y^2}, [/mm] (x.y) [mm] \not= [/mm] (0,0) geschlossen ist. Beweisen sie, dass sie nicht exakt ist.

Hallo, ich habe hier nur eine kleine Rueckfrage.
Wie die Aufgabe zu loesen ist weiss ich. Es gilt:
[mm] \bruch{-ydx + xdy}{x^2+y^2} [/mm] = [mm] \bruch{-ydx}{x^2+y^2}+\bruch{xdy}{x^2+y^2} [/mm]
Wenn ich nun bennene:  
[mm] \bruch{-ydx}{x^2+y^2} [/mm] = M
[mm] \bruch{-ydx}{x^2+y^2} [/mm] = N
Dann muss ich fuer die Geschlossenheit nur zeigen, dass: [mm] \bruch{\partial M}{\partial y}= \bruch{\partial N}{\partial x}. [/mm]

Gut, fuer die nicht-Exaktheit muss ich nur beweisen, dass ein geschlossene Linienintegral ueber [mm] \bruch{-ydx}{x^2+y^2}+\bruch{xdy}{x^2+y^2} [/mm] nicht 0 ist. Kein Problem, es kommt raus, dass die Integralform nicht exakt ist.

Jetzt kommt meine Frage: Wenn ich nun schreiben wuerde:
[mm] \bruch{-ydx}{x^2+y^2}+\bruch{xdy}{x^2+y^2} [/mm] = 0
Dann wuerde diese Gleichung doch alle Vorraussetzung fuer eine exakte DiffernetialGLEICHUNG erfuellen. (denn [mm] \bruch{\partial M}{\partial y}= \bruch{\partial N}{\partial x}) [/mm]
Es waere also eine exakte Differentialgleichung.
Kann ich daraus schliessen, dass ich aus einer nicht exakten Diffentialform eine exakte Differntialgleichung bauen kann? Dass es sich dabei also um grundsaetzlich 2 verschiedene Dinge handelt? (mal von der gemeinsamen Bedingung [mm] \bruch{\partial M}{\partial y}= \bruch{\partial N}{\partial x} [/mm] abgesehen)

        
Bezug
Exakte Differentialform: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Fr 12.06.2015
Autor: fred97


> Beweisen sie, dass die Diferentialform [mm]\bruch{-ydx + xdy}{x^2+y^2},[/mm]
> (x.y) [mm]\not=[/mm] (0,0) geschlossen ist. Beweisen sie, dass sie
> nicht exakt ist.
>  Hallo, ich habe hier nur eine kleine Rueckfrage.
>  Wie die Aufgabe zu loesen ist weiss ich. Es gilt:
>  [mm]\bruch{-ydx + xdy}{x^2+y^2}[/mm] =
> [mm]\bruch{-ydx}{x^2+y^2}+\bruch{xdy}{x^2+y^2}[/mm]
>  Wenn ich nun bennene:  
> [mm]\bruch{-ydx}{x^2+y^2}[/mm] = M
>  [mm]\bruch{-ydx}{x^2+y^2}[/mm] = N
>  Dann muss ich fuer die Geschlossenheit nur zeigen, dass:
> [mm]\bruch{\partial M}{\partial y}= \bruch{\partial N}{\partial x}.[/mm]
>  
> Gut, fuer die nicht-Exaktheit muss ich nur beweisen, dass
> ein geschlossene Linienintegral ueber
> [mm]\bruch{-ydx}{x^2+y^2}+\bruch{xdy}{x^2+y^2}[/mm] nicht 0 ist.
> Kein Problem, es kommt raus, dass die Integralform nicht
> exakt ist.
>  
> Jetzt kommt meine Frage: Wenn ich nun schreiben wuerde:
>  [mm]\bruch{-ydx}{x^2+y^2}+\bruch{xdy}{x^2+y^2}[/mm] = 0


Aus welchem Grund sollte das gelten ??????


FRED

>  Dann wuerde diese Gleichung doch alle Vorraussetzung fuer
> eine exakte DiffernetialGLEICHUNG erfuellen. (denn
> [mm]\bruch{\partial M}{\partial y}= \bruch{\partial N}{\partial x})[/mm]
>  
> Es waere also eine exakte Differentialgleichung.
>  Kann ich daraus schliessen, dass ich aus einer nicht
> exakten Diffentialform eine exakte Differntialgleichung
> bauen kann? Dass es sich dabei also um grundsaetzlich 2
> verschiedene Dinge handelt? (mal von der gemeinsamen
> Bedingung [mm]\bruch{\partial M}{\partial y}= \bruch{\partial N}{\partial x}[/mm]
> abgesehen)


Bezug
                
Bezug
Exakte Differentialform: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:16 Fr 12.06.2015
Autor: DepressiverRoboter

"Aus welchem Grund sollte das gelten ?????? "

Ich meine nur, wenn die Frage gelautet haette zu beweisen, dass
[mm] \bruch{-ydx}{x^2+y^2}+\bruch{xdy}{x^2+y^2} [/mm] = 0
eine exakte Differentialgleichung ist, dann waere die Antwort positiv, obwohl
[mm] \bruch{-ydx}{x^2+y^2}+\bruch{xdy}{x^2+y^2} [/mm] eine NICHT exakte Differentialform ist.

Die Frage war also rein prinzipiell: Stimmt meine Annahme, dass ich aus einer nicht exakten Differentialform eine exakte Differentialgleichung basteln kann?


Bezug
                        
Bezug
Exakte Differentialform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 14.06.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]