matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenExakte DGL integrierender Fakt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Exakte DGL integrierender Fakt
Exakte DGL integrierender Fakt < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exakte DGL integrierender Fakt: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:50 Mi 04.11.2009
Autor: Orso

Aufgabe
Prüfen Sie die folgende DGL auf Exaktheit und bestimmen Sie gegebenenfalls einen integrierenden Faktor. Finden Sie Lösungen der Gleichung in impliziter Form und lösen Sie, wenn möglich, nach x bzw. y auf.
[mm] (2xy^4e^y+2xy^3+y)dx [/mm] + [mm] (x^2y^4e^y-x^2y^2-3x)dy=0 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
habe eine Frage zu dieser Aufgabe. Habe keine Probleme damit, zu zeigen, dass diese DGL nicht exakt ist. Mein Problem ist es, einen integrierenden Faktor zu finden.
Habe bisher versucht, den integrierenden Faktor als Funktion M abhängig von x, also M(x), abhängig von y also M(y), und auch abhängig von x*y also M(x*y) zu suchen, jedoch ergeben sich bei der Bestimmung des integrierenden Faktors dabei immer Terme, die jeweils nicht nur von x bzw. y bzw. x*y abhängen.
Ich bräuchte also einen Tipp, wovon mein integrierender Faktor M abhängen soll, damit ich ihn bestimmen kann.
Wäre für jeden Tipp dankbar.

        
Bezug
Exakte DGL integrierender Fakt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Do 05.11.2009
Autor: chrisssy

hallo!
Mit dem ansatz das M nur von y abhängt sollte es eigentlich klappen.
denk daran, dass du dann den ansatz machst:

[mm] \bruch {\bruch {\partial g}{\partial y}-\bruch {\partial h}{\partial x}}{-g} [/mm] = [mm] \bruch {\bruch {\partial M}{\partial y}}{M} [/mm]

anstatt

[mm] \bruch {\bruch {\partial g}{\partial y}-\bruch {\partial h}{\partial x}}{h} [/mm] = [mm] \bruch {\bruch {\partial M}{\partial x}}{M} [/mm]

wie im fall, wenn du M(x) bestimmen willst.

dann dürfte sich links alles so wegkürzen, dasss nur noch ein term in abhängigkeit von y  stehenbleibt.

und dann kann man ja relativ einfach M bestimmen

viel erfolg!

Bezug
                
Bezug
Exakte DGL integrierender Fakt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Do 05.11.2009
Autor: Orso

Hallo chrissy, vielen Dank für den Tipp, jedoch häng ich hier immer noch fest und komme auf keinen Term, der nur von y abhängt. Glaub ich steh im Moment ziemlich auf dem Schlauch.

Eingesetzt in den Ansatz für M(y) bekomme ich folgenden Term für die linke Seite:

[mm] \bruch{8xy^3e^y+2xy^4e^4+6xy^2+1-(2xy^4e^y-2xy^2-3)}{-2xy^4e^y-2xy^3-y} [/mm] = [mm] \bruch{8xy^3e^y+8xy^2+4}{-2xy^4e^y-2xy^3-y} [/mm]
Da ich jetzt da im Zähler hinten dran die 4 und im Nenner hinten das y so allein stehen hab, bekomme ich das x nicht ganz weggekürzt.
Entweder ich steh völlig auf dem Schlauch und bekomms nicht hin, oder irgendwas anderes stimmt nicht.
Wäre für jeden weiteren Tipp dankbar.

Bezug
                        
Bezug
Exakte DGL integrierender Fakt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Fr 06.11.2009
Autor: chrisssy

So weit so gut. hast alles richtig gemacht.
probier doch mal was zu faktorisiren z.b. im nenner ein y...

Bezug
                                
Bezug
Exakte DGL integrierender Fakt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 So 08.11.2009
Autor: Orso

Oh, Mann!
Klassischer Fall von Brett vorm Kopf!
Habs jetzt raus, vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]