matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikEulersche Phi-Funktion Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Eulersche Phi-Funktion Beweis
Eulersche Phi-Funktion Beweis < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Phi-Funktion Beweis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:38 So 05.12.2010
Autor: qsxqsx

Hallo,

Die Eulersche Phi Funktion zu n gibt die Anzahl Zahlen an, welche keinen gemeinsamen Teiler ausser die 1 mit n haben.
Bsp: Falls n eine Primzahl ist, so ist [mm] \phi(n) [/mm] = n-1  

Für eine Zahl n = [mm] p_{1}^{k_{1}}*...*p_{m}^{k_{m}} [/mm] , wobei [mm] p_{i} [/mm] jeweils verschiedene Primzahlen sind, steht dass gilt

[mm] \phi(n) [/mm] = [mm] \produkt_{i=1}^{m}(p_{i} [/mm] - [mm] 1)*p_{i}^{k_{i} - 1} [/mm]

Ich will was einfacheres Zeigen, nämlich den Fall, wo alle Potenzen [mm] k_{i} [/mm] = 1 sind, woraus folgt
[mm] \phi(n) [/mm] = [mm] \produkt_{i=1}^{m}(p_{i} [/mm] - 1),
,mit n = [mm] p_{1}*p_{2}*...*p_{m} [/mm]

Mein Versuch dies zu zeigen:

[mm] \produkt_{i=1}^{m}(p_{i} [/mm] - 1) = n - "Alle Möglichkeiten mit den m Primzahlen Zahlen zu bilden"
= [mm] p_{1}*p_{2}*...*p_{m} [/mm] - [mm] \summe_{a=1}^{m} \vektor{m \\ a} [/mm]
= [mm] p_{1}*p_{2}*...*p_{m} [/mm] - [mm] (2^{m} [/mm] - 1)

Das Problem ist, dass das nicht stimmt. Sieht jemand meinen Denkfehler? Bräuchte nur einen Tipp.
Danke sehr!

Hier auf Wiki steht eigentlich schon der Beweis für sogar verschiedene Potenzen k von [mm] p_{i}. [/mm] Also n = [mm] p_{1}^{k_{1}}*...*p_{m}^{k_{m}} [/mm] Trotzdem möchte ich gerne sehen, dass es auch auf meine Art geht. []Eulersche Phi Funktion


Gruss


        
Bezug
Eulersche Phi-Funktion Beweis: Fehler in meiner Überlegung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 So 05.12.2010
Autor: qsxqsx

Sry, ich habe gerade selber erst jetzt einen Fehler in meinem Prinzip erkannt. Wenn ich es doch nicht schaffe melde ich mich.

Gruss

Bezug
        
Bezug
Eulersche Phi-Funktion Beweis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 So 12.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]