matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenEuklidischer Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Euklidischer Vektorraum
Euklidischer Vektorraum < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euklidischer Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Fr 10.04.2009
Autor: Der-Madde-Freund

Hallo,
habe bei folgenden Aufgaben teilweise Probleme:

Wir betrachten den reellen Vektorraum [mm] V=Mat(2,2;\IR) [/mm] zusammen mit der Abbildung <,>:VxV [mm] \to \IR, [/mm]
[mm] (A,B)\mapsto:=Spur(A \cdot B^T) [/mm] [Hinweis: Spur einer Matrix ist die Summe aller Hauptdiagonaleinträge.]
-----------------------------------------------------------------------------------------

(a) Zeige: (V, <,>) ist ein euklidischer Vektorraum.

Hier muss ich ja denke ich mal die Bilinearform, Symmetrie und Positive Definitheit des Skalarproduktes nachweisen. Das klappt auch soweit.
------------------------------------------------------------------------------------------

(b) Bestimmen Sie die Darstellungsmatrix G von <,> bezüglich der Standardbasis [mm] (\pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 1 \\ 0 & 0 }, \pmat{ 0 & 0 \\ 1 & 0 }, \pmat{ 0 & 0 \\ 0 & 1 }) [/mm] von [mm] Mat(2,2;\IR). [/mm]

Hier habe ich nun Schwierigkeiten. Brauche ich nicht zwei Basen, um eine Darstellungsmatrix aufzustellen? Ich muss doch die Bilder einer Basis als Linearkombination der andren Basis darstellen und erhalte somit meine Spalten der Darstellungsmatrix.
-------------------------------------------------------------------------------------------

(c) Sei [mm] U=Span(\pmat{ 1 & 0 \\ 0 & -1 }, \pmat{ 0 & 1 \\ 1 & 0 }). [/mm] Bestimmen Sie das orthogonale Komplement [mm] U^{\perp} [/mm] von U in V. Geben Sie eine Orthonormalbasis von V an.

Ich weiss nicht was das orthogonale Komplement ist und wie man es bestimmt. Muss ich für die Orthonormalbasis Gram-Schmidt anwenden?
--------------------------------------------------------------------------------------------

(d) Verallgemeinere die Aussage auf Matrizen beliebiger Größe:
[mm] V=Mat(n,n;\IR) [/mm] zusammen mit der Abbildung <,>:VxV [mm] \to \IR, [/mm]
[mm] (A,B)\mapsto:=Spur(A \cdot B^T) [/mm] ist ein euklidischer Vektorraum. Wie kann man die Definition von <,> so erweitern, dass [mm] V=Mat(n,n;\IC) [/mm] zu einem unitären Raum gemacht wird?

Hier wäre ich für Anregungen seeeeeeeehr dankbar!


Vielen Dank im Voraus!

        
Bezug
Euklidischer Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Fr 10.04.2009
Autor: Merle23


> Wir betrachten den reellen Vektorraum [mm]V=Mat(2,2;\IR)[/mm]
> zusammen mit der Abbildung <,>:VxV [mm]\to \IR,[/mm]
> [mm](A,B)\mapsto:=Spur(A \cdot B^T)[/mm] [Hinweis: Spur einer
> Matrix ist die Summe aller Hauptdiagonaleinträge.]

>  
> (a) Zeige: (V, <,>) ist ein euklidischer Vektorraum.
>  
> Hier muss ich ja denke ich mal die Bilinearform, Symmetrie
> und Positive Definitheit des Skalarproduktes nachweisen.
> Das klappt auch soweit.
>  

Sehr schön.

>  
> (b) Bestimmen Sie die Darstellungsmatrix G von <,>
> bezüglich der Standardbasis [mm](\pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 1 \\ 0 & 0 }, \pmat{ 0 & 0 \\ 1 & 0 }, \pmat{ 0 & 0 \\ 0 & 1 })[/mm]
> von [mm]Mat(2,2;\IR).[/mm]
>  
> Hier habe ich nun Schwierigkeiten. Brauche ich nicht zwei
> Basen, um eine Darstellungsmatrix aufzustellen? Ich muss
> doch die Bilder einer Basis als Linearkombination der
> andren Basis darstellen und erhalte somit meine Spalten der
> Darstellungsmatrix.

Was du berechnen willst ist die Darstellungsmatrix einer linearen Abbildung zwischen zwei Vektorräumen.
Die Darstellungsmatrix einer Bilinearform ist aber anders definiert, nämlich [mm]G := ()_{i,j}[/mm].

>  
> (c) Sei [mm]U=Span(\pmat{ 1 & 0 \\ 0 & -1 }, \pmat{ 0 & 1 \\ 1 & 0 }).[/mm]
> Bestimmen Sie das orthogonale Komplement [mm]U^{\perp}[/mm] von U in
> V. Geben Sie eine Orthonormalbasis von V an.
>  
> Ich weiss nicht was das orthogonale Komplement ist und wie
> man es bestimmt. Muss ich für die Orthonormalbasis
> Gram-Schmidt anwenden?
>  

Schau' nochmal in deinem Skript nach. Ihr müsst das definiert haben, wenn ihr so eine Aufgabe gestellt kriegt.
[mm]U^{\perp} := \{v \in V | =0 \ \forall u \in U \}[/mm].
Ja, für die Orthonormalbasis bemühste am besten Gram-Schmidt.

>  
> (d) Verallgemeinere die Aussage auf Matrizen beliebiger
> Größe:
>  [mm]V=Mat(n,n;\IR)[/mm] zusammen mit der Abbildung <,>:VxV [mm]\to \IR,[/mm]
> [mm](A,B)\mapsto:=Spur(A \cdot B^T)[/mm] ist ein euklidischer
> Vektorraum. Wie kann man die Definition von <,> so
> erweitern, dass [mm]V=Mat(n,n;\IC)[/mm] zu einem unitären Raum
> gemacht wird?
>  
> Hier wäre ich für Anregungen seeeeeeeehr dankbar!

Was ist der Unterschied zwischen einem euklidischen und einem unitären VR?
Probiere mal die ursprüngliche Definition (also [mm]:=Spur(A \cdot B^T)[/mm]) an einigen komplexen [mm]1 \times 1[/mm] Matrizen aus; vielleicht sieht du ja dann was man verändern muss.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]