matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEuklidischer Ring zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Euklidischer Ring zeigen
Euklidischer Ring zeigen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euklidischer Ring zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 So 04.07.2010
Autor: steppenhahn

Aufgabe
Sei p eine Primzahl.
Zeige: [mm] $\IZ[\frac{1}{p}]:=\{\frac{a}{p^{n}}|a\in\IZ, n\in\IN_{0}\}$ [/mm] ist ein euklidischer Ring.

Hallo!

Ich habe schon gezeigt, dass es sich um einen komm. nullteilerfreien Ring mit 1 handelt (als Unterkörper von [mm] \IQ [/mm] mit denselben Verknüpfungen und der Abgeschlossenheit).

Wie aber genau muss ich meine Grad / Normabbildung wählen, damit ich zeigen kann, dass es sich um einen euklidischen Ring handelt?
Ich muss die Abbildung ja eher für vollständig gekürzte [mm] \frac{a}{p^{n}} [/mm] definieren, sonst ist sie wahrscheinlich nicht wohldefiniert.

Vielen Dank für Eure Hilfe!
Grüße,
Stefan

        
Bezug
Euklidischer Ring zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:56 Mo 05.07.2010
Autor: felixf

Moin Stefan!

> Sei p eine Primzahl.
>  Zeige: [mm]\IZ[\frac{1}{p}]:=\{\frac{a}{p^{n}}|a\in\IZ, n\in\IN_{0}\}[/mm]
> ist ein euklidischer Ring.
>  
> Ich habe schon gezeigt, dass es sich um einen komm.
> nullteilerfreien Ring mit 1 handelt (als Unterkörper von
> [mm]\IQ[/mm] mit denselben Verknüpfungen und der
> Abgeschlossenheit).

Ich muss sagen, ich bin etwas ueberrascht dass der Ring euklidisch ist. Ich hab noch nie drueber nachgedacht, aber haette spontan nicht damit gerechnet. Aber wenn ich jetzt etwas weiter drueber nachdenke macht es doch Sinn :)

> Wie aber genau muss ich meine Grad / Normabbildung wählen,
> damit ich zeigen kann, dass es sich um einen euklidischen
> Ring handelt?
>  Ich muss die Abbildung ja eher für vollständig gekürzte
> [mm]\frac{a}{p^{n}}[/mm] definieren, sonst ist sie wahrscheinlich
> nicht wohldefiniert.

Ich wuerde spontan [mm] $d(\frac{a}{p^n}) [/mm] := |a|$ waehlen. Da $p$ eine Einheit ist (und ebenso alle $p$-Potenzen), wird man $p$ beim Dividieren ja gut los. Insofern duerfte das Problem eher der Rest sein. Und beim Betrag in [mm] $\IZ$ [/mm] wird man ja auch gerade die Einheiten los, insofern kann man gucken  ob es dieses $d$ tut, da es alle Einheiten, naemlich [mm] $\pm p^n$, [/mm] $n [mm] \in \IZ$, [/mm] rauswirft.

LG Felix


Bezug
        
Bezug
Euklidischer Ring zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Mo 05.07.2010
Autor: skoopa

HeyHey!
Ist [mm] \IZ[\bruch{1}{p}] [/mm] wirklich ein Unterkörper von [mm] \IQ? [/mm]
Weil für p=3 gilt doch [mm] 2^{-1}\not\in \IZ[\bruch{1}{3}]. [/mm] Also kann es doch kein Körper und also auch kein Unterkörper von [mm] \IQ [/mm] sein.
Oder sehe ich da was falsch?
Falls ich das nicht tue, muss man tatsächlich die geforderten Eigenschaften nachrechnen, oder vererben die sich "trivialerweise" von [mm] \IZ [/mm] ?
LG
skoopa

Bezug
                
Bezug
Euklidischer Ring zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mo 05.07.2010
Autor: felixf

Moin skoopa,

>  Ist [mm]\IZ[\bruch{1}{p}][/mm] wirklich ein Unterkörper von [mm]\IQ?[/mm]

nein, es ist ein Unterring. Und ich denke, das meinte Stefan auch :) In einem Koerper kann man einfach $d(x) = 0$ fuer alle $x$ definieren, dann kann man immer $a = [mm] (b^{-1} [/mm] a) b + 0$ schreiben fuer $a, b [mm] \in [/mm] K$, $b [mm] \neq [/mm] 0$.

>  Weil für p=3 gilt doch [mm]2^{-1}\not\in \IZ[\bruch{1}{3}].[/mm]
> Also kann es doch kein Körper und also auch kein
> Unterkörper von [mm]\IQ[/mm] sein.
>  Oder sehe ich da was falsch?

Tust du nicht.

>  Falls ich das nicht tue, muss man tatsächlich die
> geforderten Eigenschaften nachrechnen, oder vererben die
> sich "trivialerweise" von [mm]\IZ[/mm] ?

Nunja, haengt davon ab was man unter "trivial" versteht ;-)

Normalerweise muss man sowas schon nachrechnen. Aber ich denke, bei eukidischen Ringen $R$ mit Quotientenkoerper $K$ kann man auch gleich allgemein zeigen: ist $S$ ein Unterring von $Q$ mit $R [mm] \subseteq [/mm] S$, so ist $S$ euklidisch. (Es ist aber schon wichtig, dass $S$ ein Unterring von $Q$ ist und nicht einfach irgendein Oberring von $R$.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]