matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieErzgnde Fkt Binomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Erzgnde Fkt Binomialverteilung
Erzgnde Fkt Binomialverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzgnde Fkt Binomialverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:55 So 22.03.2020
Autor: sancho1980

Aufgabe
Berechnen Sie die erzeugende Funktion der Binomialverteilung. Leiten Sie daraus die Formel für den Erwartungswert und die Varianz der Binomialverteilung her.

Hallo,

bei der erzeugenden Fkt komme ich auf

e(z) = [mm] \summe_{i=0}^{n} \vektor{n \\ i} p^i q^{n - i} z^i [/mm]
e'(z) = [mm] \summe_{i=1}^{n} [/mm] i [mm] \vektor{n \\ i} p^i q^{n - i} z^{i - 1} [/mm]
e''(z) = [mm] \summe_{i=2}^{n} [/mm] (i - 1) i [mm] \vektor{n \\ i} p^i q^{n - i} z^{i - 2} [/mm]

Jetzt gilt, E(X) = p'(1).

Ich brauche einen Tipp, wie kann man die Gleichheit sehen:

[mm] \summe_{i=1}^{n} [/mm] i [mm] \vektor{n \\ i} p^i q^{n - i} [/mm] = np

Danke,

Martin

        
Bezug
Erzgnde Fkt Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Mo 23.03.2020
Autor: Gonozal_IX

Hiho,

> bei der erzeugenden Fkt komme ich auf
>  
> e(z) = [mm]\summe_{i=0}^{n} \vektor{n \\ i} p^i q^{n - i} z^i[/mm]

na fertig bist du hier noch lange nicht… das stimmt zwar, aber da kannst du noch deutlich mehr zusammenfassen…
Tipp: Binomischer Lehrsatz.
Dann lässt sich auch die Ableitung einfacher bilden…

Gruß,
Gono

Bezug
                
Bezug
Erzgnde Fkt Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:55 Di 24.03.2020
Autor: sancho1980

Hallo,

>  Tipp: Binomischer Lehrsatz.
>  Dann lässt sich auch die Ableitung einfacher bilden…

ich hatte leider nicht die Zeit, alles aufzuschreiben, was ich schon probiert hatte. Tatsächlich hatte ich schon drüber nachgedacht, ob mir irgendwie weiterhilft, dass

[mm] \summe_{i=0}^{n} \vektor{n \\ i} p^i q^{n - i} [/mm] = (p + [mm] q)^n [/mm] = 1

Aber das Problem ist doch der Faktor in der Summe. Insofern ist mir nicht klar,

1) wie ich dadurch leichter die Ableitung von [mm] \summe_{i=0}^{n} \vektor{n \\ i} p^i q^{n - i} z^i [/mm] berechnen kann, denn schließlich kann ich den Faktor [mm] z^i [/mm] ja nicht einfach so aus der Summe rausheben
2) wie ich [mm] \summe_{i=1}^{n} [/mm] i [mm] \vektor{n \\ i} p^i q^{n - i} [/mm] = [mm] \summe_{i=0}^{n} [/mm] i [mm] \vektor{n \\ i} p^i q^{n - i} [/mm] = np zeigen kann, denn auch hier kann ich den Faktor i nicht einfach außerhalb der Summe schreiben.

Bezug
                        
Bezug
Erzgnde Fkt Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Di 24.03.2020
Autor: statler

Auch hallo!

> >  Tipp: Binomischer Lehrsatz.

>  >  Dann lässt sich auch die Ableitung einfacher
> bilden…
>  
> ich hatte leider nicht die Zeit, alles aufzuschreiben, was
> ich schon probiert hatte. Tatsächlich hatte ich schon
> drüber nachgedacht, ob mir irgendwie weiterhilft, dass
>  
> [mm]\summe_{i=0}^{n} \vektor{n \\ i} p^i q^{n - i}[/mm] = (p + [mm]q)^n[/mm]
> = 1
>  
> Aber das Problem ist doch der Faktor in der Summe. Insofern
> ist mir nicht klar,
>
> 1) wie ich dadurch leichter die Ableitung von
> [mm]\summe_{i=0}^{n} \vektor{n \\ i} p^i q^{n - i} z^i[/mm]
> berechnen kann, denn schließlich kann ich den Faktor [mm]z^i[/mm]
> ja nicht einfach so aus der Summe rausheben
>  2) wie ich [mm]\summe_{i=1}^{n}[/mm] i [mm]\vektor{n \\ i} p^i q^{n - i}[/mm]
> = [mm]\summe_{i=0}^{n}[/mm] i [mm]\vektor{n \\ i} p^i q^{n - i}[/mm] = np
> zeigen kann, denn auch hier kann ich den Faktor i nicht
> einfach außerhalb der Summe schreiben.

Wiederholung und Erweiterung des o. a. Tipps:

In [mm] p^i q^{n - i} z^i [/mm] kannst du p und z zusammenfassen.

Gruß
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]