matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperErzeugnis Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Erzeugnis Gruppen
Erzeugnis Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugnis Gruppen: Erzeugnis der Gruppe
Status: (Frage) beantwortet Status 
Datum: 12:44 So 18.11.2012
Autor: Expo

Aufgabe
Sei A ein Teilmenge der Gruppe G mit Verknüpfung * . Zeigen Sie:

<A> = [mm] {a_{1} * .... * a_{n} | n\in N, a_{i}\in A}{ oder a_{i} ^{-1}\in A :\forall i= 1,2, ... n } [/mm]

In Worten, die Untergruppe <A> besteht aus allen Verknüpfungen, die man aus
Elementen von A und ihren Inversen bilden kann.

Wobei * nicht mal bedeutet

Dies ist die gesamte Aufgabe was muss ich hier explizit beweisen bzw. zeigen?

Danke

        
Bezug
Erzeugnis Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 So 18.11.2012
Autor: Expo

kann mir niemand helfen ?

Bezug
        
Bezug
Erzeugnis Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mi 21.11.2012
Autor: Schadowmaster

moin,

Wie ist denn $<A>$ definiert?
Habt ihr das als die kleinste Untergruppe, die $A$ enthält, definiert?
Falls ja musst du eben zeigen, dass $H := [mm] \{a_{1} \cdot{} .... \cdot{} a_{n} \mid n\in \IN, a_{i}\in A\mbox{ oder } a_{i} ^{-1}\in A :\forall i= 1,2, ... n \}$ [/mm] eben diese Untergruppe ist.
Dafür musst du also zeigen:
1. Ist $U$ eine beliebige Untergruppe von $G$, die $A$ enthält, so gilt bereits $H [mm] \subseteq [/mm] U$ (das wäre dann die Minimalität).
2. $H$ ist tatsächlich eine Untergruppe von $G$.

Solltet ihr $<A>$ anders definiert haben wäre es natürlich wissenswert, wie genau es definiert wurde.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]