matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraErzeugersystem und Basen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Erzeugersystem und Basen
Erzeugersystem und Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugersystem und Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 09.12.2007
Autor: Schneckal36

Aufgabe
Sei V ein Vektorraum über einen Körper K. Entscheiden sie, ob die folgenden Aussagen wahr oder falsch sind (mit Begründung)

1) Ist [mm] \mathcal{E} [/mm] Erzeugersystem von V, so gibt es eine Basis [mm] \mathcal {B}\subset \mathcal{E} [/mm]

2) Ist M [mm] \subset [/mm] V linear unabhängig, so ist M eine Basis von V

3) Zwei Vektoren v, v' [mm] \in [/mm] V sind genau dann linear abhängig, wenn es ein [mm] \lambda\in K\{0} [/mm] gibt, so dass v= [mm] \lambda [/mm] v'

4) Zwei Vektoren v, v' [mm] \in [/mm] V sind genau dann linear abhängig, wenn es ein [mm] \lambda\in [/mm] K gibt, so dass v= [mm] \lambda [/mm] v'

ist ich denke irgendwie das alle wahr sind. Wobei ich mir bei dem ersten nicht so sicher bin. ich weiß zwar das wenn es eine Basis von V gibt das diese Basis dann das erzeugersystem von V ist, aber es muss ja nicht umgekehrt gelten. Kann aber das gegenteil leider nicht beweisen.

bei der zweiten bin ich eigentlich sicher das sie richtig ist, weiß aber auch nicht wie ich da einen beweise hinschreiben soll, wel ein beispiel zählt ja leider nicht als beweis

bei 3 und 4 kapier ich nict, das das anscheinend entscheidend sit, ob das [mm] \lambda \in K\{0} [/mm] ist oder [mm] \lambda \in [/mm] K
ist das so wichtig ob die null mit drin is oder nicht?


ich habe diese frage in kein anderes forum gestellt

        
Bezug
Erzeugersystem und Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 So 09.12.2007
Autor: Tagesschau

Hi,
2 und 3 sind falsch.
greez,
TS.

Bezug
                
Bezug
Erzeugersystem und Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Mo 10.12.2007
Autor: Schneckal36

hm ok, aber ich versteh nicht warum 2 falsch ist, weil wenn M eine menge von linear unabhängigen vektoren ist und eine teilmenge von V dann ist sie doch einen basis oder nicht?!?

Bezug
                        
Bezug
Erzeugersystem und Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Mo 10.12.2007
Autor: angela.h.b.


> hm ok, aber ich versteh nicht warum 2 falsch ist, weil wenn
> M eine menge von linear unabhängigen vektoren ist und eine
> teilmenge von V dann ist sie doch einen basis oder nicht?!?

Hallo,

Du behauptest gerade, daß [mm] (\vektor{1 \\ 0\\0}, \vektor{0 \\ 1\\0}) [/mm] eine Basis des [mm] \IR^3 [/mm] ist...

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]