matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErzeugende Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Erzeugende Funktion
Erzeugende Funktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugende Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 21.05.2011
Autor: muminek

Aufgabe
Ein Würfel wird 4 mal unabhängig von einander geworfen. Bestimme mit Hilfe der erzeugenden Funktion die Wahrscheinlichkeit dafür, dass die Augensumme gleich 20 ist.

Mein Problem ist, dass es mir garnicht klar ist wie ich dieses hier einbringen kann :/. Kann mir vielleicht jemand ein Tipp geben wie ich überhaupt anfangen kann?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Sa 21.05.2011
Autor: Fry

Hey,

also ich könnte mir vorstellen, dass du mit Hilfe erzeugender Funktionen zeigen sollst, dass gilt:
[mm] $X_1,X_2,X_3,X_4$ [/mm] unabhängig, identisch [mm] $B(1,\bruch{1}{6})$-verteilte [/mm] Zufallsgrößen. Dann gilt: [mm] $X_1+X_2+X_3+X_4$ [/mm] ist [mm] $B(4,\bruch{1}{6})$-verteilt [/mm]
(Summe der [mm] $X_i$ [/mm] gibt ja gerade die Summe der Augenzahlen an)

Und allgemein weiß man ja, dass die Wkeitsverteilung einer [mm] $\IN_0$-wertige [/mm] Zufallsvariable  durch die zugehörige erzeugende Funktion eindeutig bestimmt ist (bzw auch umgekehrt).D.h. wenn du zeigen kannst,dass die erzeugende Funktion von [mm] X_1+X_2+X_3+X_4 [/mm] mit der erzeugenden Funktion einer [mm] B(1,\bruch{1}{6})-verteilten [/mm] Zufallsgröße übereinstimmt, bist du fertig.

Dann halt noch die Wkeit [mm] P(X_1+X_2+X_3+X_4=20) [/mm] berechnen.

Viele Grüße
Fry


Bezug
                
Bezug
Erzeugende Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Sa 21.05.2011
Autor: muminek

danke, das Hilft mir wirklich etwas weiter :)

Bezug
        
Bezug
Erzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 So 22.05.2011
Autor: Fry

Du kannst dazu übrigens ausnutzen,dass für die erzeugende Funktion [mm] \varphi [/mm] gilt:
X,Y unabhängig. So [mm] folgt:\varphi_{X+Y}=\varphi_X*\varphi_Y [/mm]
Damit solltest du schnell das Ganze bewiesen haben.

Gruß
Fry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]