matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswerte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Erwartungswerte
Erwartungswerte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Do 04.12.2014
Autor: Cycas

Aufgabe
E[E[X]]

Hallo,

ich habe eine kleine Verständnisfrage: Wie genau ist E[E[X]] definiert, (X ∈ [mm] L^2) [/mm]
ist das einfach dasselbe wie E[x]?
Danke im Vorraus!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Erwartungswerte: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Do 04.12.2014
Autor: fred97


> E[E[X]]
>  Hallo,
>  
> ich habe eine kleine Verständnisfrage: Wie genau ist
> E[E[X]] definiert, (X ∈ [mm]L^2)[/mm]
>  ist das einfach dasselbe wie E[x]?
> Danke im Vorraus!

schau mal hier

http://de.wikipedia.org/wiki/Erwartungswert

unter lineare transformationen

fred

>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Erwartungswerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:58 Do 04.12.2014
Autor: Cycas

Das hilft mir leider nicht weiter, kannst du mir vielleicht erklären wie genau man das auf E[E[X]] anwenden kann?

Bezug
                        
Bezug
Erwartungswerte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Do 04.12.2014
Autor: Al-Chwarizmi


> Das hilft mir leider nicht weiter, kannst du mir vielleicht
> erklären wie genau man das auf E[E[X]] anwenden kann?  


Wenn X und E[X] definiert sind, ist E[X] ein Zahlenwert.
Der Erwartungswert eines konstanten Zahlenwerts ist
eben dieser Zahlenwert.

LG ,   Al-Chw.


Bezug
                        
Bezug
Erwartungswerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Do 04.12.2014
Autor: fred97


> Das hilft mir leider nicht weiter,

Natürlich hilft das weiter ! In obigem Link findest Du:

Seien X und Y zwei, so gilt für die lineare Transformation Y=cX + [mm] d\, [/mm] mit c,d [mm] \in \mathbb{R}: [/mm]

    [mm] \operatorname{E}(Y)=\operatorname{E}(cX+d)=c\operatorname{E}(X)+d, [/mm]

insbesondere also

    [mm] \operatorname{E}(cX)=c\operatorname{E}(X) [/mm]

und

    [mm] \operatorname{E}(d)=d. [/mm]

Ist also $d= [mm] \operatorname{E}(X)$, [/mm] so ist

   [mm] \operatorname{E}( \operatorname{E}(X))= \operatorname{E}(X) [/mm]

FRED





>  kannst du mir vielleicht
> erklären wie genau man das auf E[E[X]] anwenden kann?  


Bezug
                                
Bezug
Erwartungswerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Do 04.12.2014
Autor: Cycas

Ahh, jetzt hab ich's! Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]