matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert von X*Y
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Erwartungswert von X*Y
Erwartungswert von X*Y < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert von X*Y: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Sa 07.07.2007
Autor: jo83

Aufgabe
Der Zufällige Vektor Z=(X,Y)' besitzt folgende Verteilung:
      X    -1       0       1
Y
-1         1/8   1/8   1/8
0         1/8     0    1/8
1         1/8   1/8   1/8

Bestimmen Sie die Kovarianzmatrix von  Z.

Die Kovarianzmatrix setzt sich doch aus [mm] \pmat{cov(X²) & cov(X*Y) \\ cov(X*Y) & cov(Y²) } [/mm] zusammen. Wenn aber wie hier X und Y nicht unabhängig sind, wie kann ich da den Erwartungswert E(X*Y) berechnen um auf die Kovarianz von (X*Y) zu kommen?
cov(X²) und cov(Y²) sind mir klar...

P.S: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erwartungswert von X*Y: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Sa 07.07.2007
Autor: luis52

Moin jo83,

zunaechst ein herzliches [willkommenmr]

Wenn ich dich recht verstehe, geht es dir um die Bestimmung der
Varianz-Kovarianzmatrix, die allerdings so geschrieben wird:

$ [mm] \pmat{\mbox{Var}(X) & \mbox{Cov}(X,Y) \\ \mbox{Cov}(Y,X) & \mbox{Var}(Y) } [/mm] $

(deine Schreibweise beleidigt mein altes Paukerauge ;-))



Bilde die W-Tabelle der  Werte $xy$, die $XY$ annehmen kann und berechne
daraus [mm] $\mbox{E}[XY]$. [/mm] Es ist $P(XY=-1)=1/8=P(XY=+1)$ und $P(XY=0)=6/8$.
Es folgt [mm] $\mbox{E}[XY]=0$. [/mm] Nach der alten Bauernregel ergibt sich
[mm] $\mbox{Cov}(X,Y)=\mbox{E}[XY] -\mbox{E}[X]\mbox{E}[Y]=0-0\times0$. [/mm]

Du schreibst, der Rest ist dir klar. Errechnest du auch
[mm] $\mbox{Var}(X)=0.75=\mbox{Var}(X)$ [/mm] ?

lg
Luis      

PS: $X$ und $Y$ sind Beispiele von zwei Zufallsvariablen, die unkorreliert, aber nicht unabhaengig sind.        

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]