matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieErwartungswert von Münzwurf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert von Münzwurf
Erwartungswert von Münzwurf < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert von Münzwurf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:04 So 10.06.2007
Autor: wulfen

Aufgabe
Eine Münze wird solange geworfen, bis zweimal hintereinander dieselbe Seite erscheint. Definieren Sie eine Zufallsvariable X auf einem passenden Wahrscheinlichkeitsraum, welche die Länge der Versuchsreihe beschreibt. Berechnen Sie den Erwartungswert von X.

Kann ich hier den folgenden W.raum nehmen?

[mm] $\Omega=\{(a_{1},a_{2},...,a_{i-1},a_{i} | a_{i} \in (K,Z), \text{ und } a_{i-1}=a_{i}\}$ [/mm]

Der Ereignisraum ist ja dann die Potenzmenge von [mm] \Omega [/mm] und als Wahrscheinlichkeitsmaß: [mm] P(\omega)=(\bruch{1}{2})^{i} [/mm] .

Aber wie geht´s jetzt weiter???

        
Bezug
Erwartungswert von Münzwurf: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 So 10.06.2007
Autor: wauwau

Stimmt nicht ganz.

Denn bei deinem Experiment ist der Erste Wurf egal (also p=1)
die nächsten (n-2) würfe haben immer einen definierten muss-Ausgang also [mm] (\bruch{1}{2})^{n-2} [/mm] und der n-te Wurf muss mit dem n-1-ten übereinstimmen also p=1/2

daher insgesamt

Wahrscheinlichkeit, dass beim n-ten Wurf zum ersten mal 2 gleiche Seiten geworfen werden ist:

[mm] (\bruch{1}{2})^{n-1} [/mm]

daher Erwartungswert

[mm] \summe_{n=2}^{\infty}n*(\bruch{1}{2})^{n-1}=3 [/mm]

Bezug
                
Bezug
Erwartungswert von Münzwurf: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 So 10.06.2007
Autor: wulfen

Also muss ich bei meinem Omega einfach nur das [mm] a_{1} [/mm] gegen eins austauschen und dann mit [mm] a_{2} [/mm] weitermachen,ja?

Bezug
                        
Bezug
Erwartungswert von Münzwurf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 12.06.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]