matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert und Varianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Erwartungswert und Varianz
Erwartungswert und Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Varianz: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:48 So 03.05.2009
Autor: ToniKa

Aufgabe
Gegeben ist ein fairer Würfel mit n Seiten, dessen Seiten beschriftet sind mit 1, 4, 9, 16, [mm] ...n^2. [/mm] Es wird einmal gewürfelt. Berechnen Sie Erwartungswert und Varianz des zugehörigen Wahrscheilichkeitsmaßes.

Hallo zusammen,
ich bräuchte einen Tipp, da ich nicht weiß, ob mein Ansatz richtig ist. Für Erwartungswert: E(P)= [mm] \summe_{k=1}^{n^2} k*\bruch{1}{n^2}= \bruch{1}{n^2}*(1+4+9+16+..+n^2) [/mm] ; und für Varianz [mm] (\bruch{1}{n^2}-E(P))^2 [/mm]
Wie soll ich nun diese Werte ausrechnen, wenn ich da [mm] n^2 [/mm] habe? Es wäre sehr nett, wenn jemand mir weiter helfen würde. Danke

Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Erwartungswert und Varianz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 So 03.05.2009
Autor: glie


> Gegeben ist ein fairer Würfel mit n Seiten, dessen Seiten
> beschriftet sind mit 1, 4, 9, 16, [mm]...n^2.[/mm] Es wird einmal
> gewürfelt. Berechnen Sie Erwartungswert und Varianz des
> zugehörigen Wahrscheilichkeitsmaßes.
>  Hallo zusammen,
>  ich bräuchte einen Tipp, da ich nicht weiß, ob mein Ansatz
> richtig ist. Für Erwartungswert: E(P)= [mm]\summe_{k=1}^{n^2} k*\bruch{1}{n^2}= \bruch{1}{n^2}*(1+4+9+16+..+n^2)[/mm]
> ; und für Varianz [mm](\bruch{1}{n^2}-E(P))^2[/mm]
>  Wie soll ich nun diese Werte ausrechnen, wenn ich da [mm]n^2[/mm]
> habe? Es wäre sehr nett, wenn jemand mir weiter helfen
> würde. Danke

Hallo,

da hat sich aber das Fehlerteufelchen eingeschlichen! Der Würfel hat n Seiten, also ist die Wahrscheinlichkeit eine bestimmte Zahl zu würfeln [mm] \bruch{1}{n}. [/mm]
Auf den Seiten stehen die ersten n Quadratzahlen, also erhältst du als Erwartungswert:

[mm] E(X)=\summe_{k=1}^{n} k^2*\bruch{1}{n}=\bruch{1}{n}*\summe_{k=1}^{n} k^2=\bruch{1}{n}*\bruch{n*(n+1)*(2n+1)}{6}=... [/mm]

Die Formel für die ersten n Quadratzahlen findest du in jeder Formelsammlung. Kannst du aber auch mit vollständiger Induktion beweisen.

Gruß Glie

>  
> Ich habe diese Frage in keinem anderen Forum gestellt


Bezug
                
Bezug
Erwartungswert und Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Mo 04.05.2009
Autor: ToniKa

Vielen dank für Deine Antwort Glie, ich versuche nun die Aufgabe weiter zu rechnen
Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]