matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert und Varianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Erwartungswert und Varianz
Erwartungswert und Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Varianz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:35 Fr 29.12.2006
Autor: laryllan

Aufgabe
Seien [tex]X_{1},...,X_{n} [/tex] unabhängige Kopien der Zufallsvariablen X. Diese nimmt Werte in [tex] \IZ [/tex] an. Ferner existieren der Erwartungswert E(X) und die Varianz Var(X).
[tex]S_{n} = X_{1} + ... + X_{n} [/tex].

Zeigen sie: Falls E(X) [mm] \not= [/mm] 0, dann ist [mm] P(S_{n} [/mm] = 0 für endlich viele n) = 1.

Aloa zusammen,

Ich brüte jetzt schon ne Weile über dieser Aufgabe. Rein vom Prinzip her ist es klar.

Wenn der Erwartungswert irgendwo links bzw. rechts von 0 liegt, und es eine Varianz gibt, dann summier ich mit [mm] S_{n} [/mm] gerade alle Werte der n unabhängigen Kopien auf, und erhalte gerade 0. Ich muss halt n nur gerade so wählen, dass die um die Varianz veränderten Erwartungswerte zusammengezogen 0 ergeben.

Also anders ausgedrückt:

Wenn ich [mm] S_{n} [/mm] betrachte kann ich diese Summe ja auch umschreiben:

[tex]S_{n} = X_{1} + ... + X_{n} = (E(X_{1}) + Var(X_{1})) + ... + (E(X_{n}) + Var(X_{n})) )[/tex]

Da die [mm] X_{i} [/mm] ja unabhängige Kopien von X sind, ist auch der Erwartungswert immer der gleiche. Somit kann ich diese Summe nochmal umschreiben:

[tex]S_{n} = X_{1} + ... + X_{n} = n*E(X) + \summe_{i=1}^{n} Var(X_{i}) [/tex]. Da die Zufallsvariable nach Voraussetzung Werte in [tex] \IZ [/tex] annehmen kann, dürfte es prinzipiell kein Problem geben. Wenn E(X) [mm] \not= [/mm] 0, dann lässt sich bestimmt ein n finden, so dass [tex]\summe_{i=1}^{n} Var(X_{i}) = - E(X) [/tex] ist.

Allerdings habe ich keine Ahnung, wie ich das gescheit begründen soll. Weil so wie ich es aufgeschrieben habe, scheint mir da doch etwas zu fehlen.

Vielleicht weiß ja einer von Euch Rat?

Namárie,
sagt ein Lary, wo hofft, dass alle ein gutes Weihnachtsfest hatten, und gut ins neue Jahr rutschen.

        
Bezug
Erwartungswert und Varianz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 05.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]