matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert und Dichte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Erwartungswert und Dichte
Erwartungswert und Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 Mi 30.11.2011
Autor: MatheStudi7

Aufgabe
Sei $ Y $ gleichverteilt auf dem Einheitskreis [mm] B_{0,1} [/mm] (also der Kreis mit Mittelpunkt 0 und Radius 1) und bezeichne mit $ X $ den Abstandvon $ Y $ zum Nullpunkt.
(a) Sei $ k [mm] \in \IN [/mm] $. Berechnen Sie den Erwartungswert [mm] E(X^k) [/mm] mittels der Dichte von X.
(b) Berechnen Sie den Erwartungswert [mm] E(X^2) [/mm] mittels der Dichte von [mm] X^2. [/mm]

Hi MatheRaum,

hallo Freunde der Stochastik :-)

Aus einer anderen Übung wissen wir, dass die Dichte von $ X $ folgendermaßen lautet: f(x) = 2*x
Und die Verteilungsfunktion sieht so aus:

P(d($ Y $,0) [mm] \le [/mm] x) =  [mm] \begin{cases} P(\emptyset)=0 & x < 0 \\ P(||y||_2 \le x) = x^2 & x \in [0,1] \\ P(||y||_2 > x) = 1 & x > 1 \end{cases} [/mm]
(Hier bin ich mir insb. beim letzten Fall nicht sicher, ob ich da nicht falsch abgeschrieben habe. Kann das bitte jmd überprüfen?)

Ausgehen von diesen Annahmen, habe ich jetzt Folgendes gerechnet:

a) $ [mm] E(X^k)=\integral_{0}^{1}{x*(2*x)^k dx}=2^k \integral_{0}^{1}{x^{k+1} dx}=2^k \bruch{x^{k+2}}{k+2}|^1_0 [/mm] = [mm] 2^k \bruch{1}{k+2}$ [/mm]

b) Hier habe ich nun für die Dichte von $ [mm] X^2 [/mm] $ nun $ [mm] (2x)^2 [/mm] = [mm] 4x^2 [/mm] $ genommen.
$ [mm] E(X^2)=\integral_{0}^{1}{x*(4*x^2) dx}=4\integral_{0}^{1}{x^3 dx}=4 \cdot \bruch{1}{4}x^4|^1_0=4 \cdot \bruch{1}{4}=1 [/mm] $

Bin für jede Hilfe dankbar

Ciao





        
Bezug
Erwartungswert und Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 07:11 Do 01.12.2011
Autor: luis52

Moin
>  
> Aus einer anderen Übung wissen wir, dass die Dichte von [mm]X[/mm]
> folgendermaßen lautet: f(x) = 2*x
>  Und die Verteilungsfunktion sieht so aus:
>  
> P(d([mm] Y [/mm],0) [mm]\le[/mm] x) =  [mm]\begin{cases} P(\emptyset)=0 & x < 0 \\ P(||y||_2 \le x) = x^2 & x \in [0,1] \\ P(||y||_2 > x) = 1 & x > 1 \end{cases}[/mm]
>  
> (Hier bin ich mir insb. beim letzten Fall nicht sicher, ob
> ich da nicht falsch abgeschrieben habe. Kann das bitte jmd
> überprüfen?)
>  
> Ausgehen von diesen Annahmen, habe ich jetzt Folgendes
> gerechnet:
>  
> a) [mm]E(X^k)=\integral_{0}^{1}{x*(2*x)^k dx}=2^k \integral_{0}^{1}{x^{k+1} dx}=2^k \bruch{x^{k+2}}{k+2}|^1_0 = 2^k \bruch{1}{k+2}[/mm]

[notok]

[mm] $\operatorname{E}[X^k]=\integral_{0}^{1}x^kf(x)\,dx$ [/mm]


>  
> b) Hier habe ich nun für die Dichte von [mm]X^2[/mm] nun [mm](2x)^2 = 4x^2[/mm]
> genommen.
>  [mm]E(X^2)=\integral_{0}^{1}{x*(4*x^2) dx}=4\integral_{0}^{1}{x^3 dx}=4 \cdot \bruch{1}{4}x^4|^1_0=4 \cdot \bruch{1}{4}=1[/mm]

[notok]
Die Dichte $g_$ von [mm] $X^2$ [/mm] *kann* nicht [mm] $4x^2$ [/mm] sein, denn [mm] $\integral_{0}^{1}4*x^2\,dx=4/3\ne1$. [/mm]

Betrachte die Verteilungsfunktion von [mm] $X^2$, [/mm] also [mm] $G(z)=P(X^2\le z)=P(X\le \sqrt{z})$ [/mm] fuer $0<z<1$, und bestimme $g(z)=G'(z)_$.

vg Luis


Bezug
                
Bezug
Erwartungswert und Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Do 01.12.2011
Autor: MatheStudi7

Ersteinmal Danke für die Antwort luis52 und Entschuldigung,
dass ich so lange nicht geantwortet habe.

So habe ich die b) nun gelöst:
Sei F die Verteilungsfunktion von [mm] $X^2$ [/mm]

[mm] $F(z)=P({\omega \in B_{0,1}: ||X(\omega)||^2 \le z})=P({\omega \in B_{0,1}: ||X(\omega)|| \le \wurzel(z)})=P({\omega \in B_{0,1}: X(\omega) \in B_{0,1}})=\bruch{\pi \cdot (\wurzel(2))^2}{\pi}=z$ [/mm]

Nun muss für die DIchte f(x) gelten: [mm] \integral_{0}^{z}{f(x) dx}=z [/mm]
[mm] \Rightarrow [/mm] f(x)=1
Die DIchte von [mm] $X^2$ [/mm] ist also [mm] $f(x)=1\cdot 1_{[0,1]}(x)$ (1_{[0,1]}(x) [/mm] ist die Indiaktorfunktion von 0 bis 1)

$ [mm] \Rightarrow E(X^2) =\integral_{-\infty}^{\infty}{x \cdot f(x) dx}= \integral_{0}^{1}{x dx}=\bruch{x^2}{2} |_0^1 [/mm] = [mm] \bruch{1}{2}$ [/mm]

Ich hoffe das stimmt so.


Ciao

Bezug
                        
Bezug
Erwartungswert und Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Fr 02.12.2011
Autor: luis52


>  
> [mm]\Rightarrow E(X^2) =\integral_{-\infty}^{\infty}{x \cdot f(x) dx}= \integral_{0}^{1}{x dx}=\bruch{x^2}{2} |_0^1 = \bruch{1}{2}[/mm]
>  
> Ich hoffe das stimmt so.

[notok]

[mm]\Rightarrow E(X^2) =\integral_{-\infty}^{\infty}{x \cdot \underbrace{f(x)}_\text{$x_$ in (0,1)} dx}=\integral_{0}^{1}{x^2 dx}= \ldots[/mm]

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]