matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert und Abweichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Erwartungswert und Abweichung
Erwartungswert und Abweichung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Abweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:29 Fr 05.09.2014
Autor: derPaul

Aufgabe
Die abendliche Temperatur auf einer Mittelmeerinsel im Juli kann aufgrund langjähriger Messungen als normalverteilte Zufallsgröße aufgefasst werden. An 60,26% aller Julitage übersteigt die abendliche Temperatur den Wert 22° nicht, allerdings sinkt sie auch nur an 10,03% aller Tage unter 18°. Berechnen Sie Erwartungswert und Standardabweichung dieser Zufallsgröße auf eine Nachkommastelle genau.

Hallo zusammen,

die Aufgabe bereitet mir ganz schönes Kopfzerbrechen.
Ich habe eine Lösung gefunden, bin mir aber nicht sicher, ob diese richig ist.

Aus der Aufgabenstellung weiß ich
[mm] P(X<22°)=0,6026=\Phi\left( \bruch{22-\mu}{\sigma} \right) [/mm]
[mm] P(X\ge18°)=1-(P<18°)=1-0,1003=0.8997=1-\Phi\left( \bruch{18-\mu}{\sigma} \right) [/mm]

Aus meiner Tafel für die Normalverteilung hab ich abgelesen, dass [mm] \Phi(0,26) [/mm] den Wert 0,6026 liefert.
[mm] 0,26=\bruch{22-\mu}{\sigma} [/mm]
[mm] 0,26\sigma=22-\mu [/mm]
[mm] -\mu=0,26\sigma-22 [/mm]
[mm] \mu=-0,26\sigma+22 [/mm]

Ab hier weiß ich nicht so recht weiter. Aus der Tafel habe ich abgelesen dass [mm] \Phi(1,28) [/mm] den Wert 0,8997 liefert. Ich wiß jetzt nurnicht gnau wie ich das mit [mm] 1-\Phi\left( \bruch{18-\mu}{\sigma} \right) [/mm] gleichsetzen soll.

Da benötige ich bitte Hilfe.

Schöne Grüße
Paul

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erwartungswert und Abweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Fr 05.09.2014
Autor: Diophant

Hallo und

[willkommenmr]

> Die abendliche Temperatur auf einer Mittelmeerinsel im Juli
> kann aufgrund langjähriger Messungen als normalverteilte
> Zufallsgröße aufgefasst werden. An 60,26% aller Julitage
> übersteigt die abendliche Temperatur den Wert 22° nicht,
> allerdings sinkt sie auch nur an 10,03% aller Tage unter
> 18°. Berechnen Sie Erwartungswert und Standardabweichung
> dieser Zufallsgröße auf eine Nachkommastelle genau.
> Hallo zusammen,

>

> die Aufgabe bereitet mir ganz schönes Kopfzerbrechen.
> Ich habe eine Lösung gefunden, bin mir aber nicht sicher,
> ob diese richig ist.

>

> Aus der Aufgabenstellung weiß ich
> [mm]P(X<22°)=0,6026=\Phi\left( \bruch{22-\mu}{\sigma} \right)[/mm]

>

> [mm]P(X\ge18°)=1-(P<18°)=1-0,1003=0.8997=1-\Phi\left( \bruch{18-\mu}{\sigma} \right)[/mm]

>

> Aus meiner Tafel für die Normalverteilung hab ich
> abgelesen, dass [mm]\Phi(0,26)[/mm] den Wert 0,6026 liefert.
> [mm]0,26=\bruch{22-\mu}{\sigma}[/mm]
> [mm]0,26\sigma=22-\mu[/mm]
> [mm]-\mu=0,26\sigma-22[/mm]
> [mm]\mu=-0,26\sigma+22[/mm]

>

> Ab hier weiß ich nicht so recht weiter. Aus der Tafel habe
> ich abgelesen dass [mm]\Phi(1,28)[/mm] den Wert 0,8997 liefert. Ich
> wiß jetzt nurnicht gnau wie ich das mit [mm]1-\Phi\left( \bruch{18-\mu}{\sigma} \right)[/mm]
> gleichsetzen soll.

>

> Da benötige ich bitte Hilfe.

>

Das ist bis dahin alles komplett richtig. [ok]

Du kannst jetzt hier noch ausnutzen, dass die Standardnormalverteilung, mit der du ja rechnest, achsensymmetrisch ist, da ihr Erwartungswert gleich Null ist. Betrachte also besser die Gleichung

[mm] \Phi\left(\bruch{18-\mu}{\sigma}\right)=0.1003 [/mm]

und verwende diese Symmetrie, um den in der Tabelle ja nicht vorhandenen Wert deiner standardnormalverteilten ZV zu bekommen. Das liefert die gesuchte zweite Gleichung.

Falls etwas unklar ist, frage gerne weiter nach!

Eine kleine Anmerkung noch: bei stetigen Verteilungen ist ja generell wegen P(X=k)=0

[mm] P(X\ge{k}=1-P(X\le{k}) [/mm]


Gruß, Diophant

Bezug
                
Bezug
Erwartungswert und Abweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Fr 05.09.2014
Autor: derPaul

Hallo Diophant,

erstmal vielen Dank für deine schnelle Antwort.
Ich bin schon mal froh das der Einstieg richtig ist :D.

Wenn ich dein Hinweis richtig gedeutet hab, dann müsste doch gelten das ich meinen Wert von 0,1003 bekomme für ein [mm] \Phi(-1,28) [/mm] und damit würde gelten [mm] -1,28=\Phi\left( \bruch{18-\mu}{\sigma} \right). [/mm]
Richtig?

Bezug
                        
Bezug
Erwartungswert und Abweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Fr 05.09.2014
Autor: Diophant

Hallo,

> Hallo Diophant,

>

> erstmal vielen Dank für deine schnelle Antwort.
> Ich bin schon mal froh das der Einstieg richtig ist :D.

>

> Wenn ich dein Hinweis richtig gedeutet hab, dann müsste
> doch gelten das ich meinen Wert von 0,1003 bekomme für ein
> [mm]\Phi(-1,28)[/mm] und damit würde gelten [mm]-1,28=\Phi\left( \bruch{18-\mu}{\sigma} \right).[/mm]

>

> Richtig?

Nicht ganz:

[mm] \bruch{18-\mu}{\sigma}=-1.28 [/mm]

also genau so, wie du es bei der ersten Gleichung auch gemacht hast.


Gruß, Diophant


Bezug
                                
Bezug
Erwartungswert und Abweichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Fr 05.09.2014
Autor: derPaul

Wunderbar :).

Ja stimmt. Ich meinte auch [mm] -1,28=\bruch{18-\mu}{\sigma} [/mm]

Noch einmal vielen Dank für deine schnelle Unterstützung.

Schönen Gruß
Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]