matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert maximieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Erwartungswert maximieren
Erwartungswert maximieren < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert maximieren: Ansatz
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 09.06.2009
Autor: wiggle

Aufgabe
Maximiere den Erwartungswert einer Funktion  

Ich habe hier ein theoretisches Modell, welches ich nicht ganz verstehe:
[mm] \pi [/mm] und M seien Funktionen abhängig von K.
[mm] \pi\left(K\right)=M\left(K\right)-cK [/mm]
Die Ableitung von M lautet:
[mm] \frac{dM}{dK}=m [/mm] ; Bedingung erster Ordnung lautet:
c=m (Ableitung von [mm] \pi [/mm] gleich null gesetzt und c auf die andere Seite), alles gut soweit!

Jetzt kommt die Unsicherheit in Form eines Erwartungswertes und Störterms dazu, also die Ausgangsfunktion lautet jetzt :
[mm] \pi\left(K\right)=E\left[M\left(K-\varepsilon\right)-cK\right] [/mm]
Jetzt steht hier: die Bedingung erster Ordnung lautet:
[mm] c=E\left[m\left(K-\varepsilon\right)\right] [/mm]

Was hier anscheinend passiert ist: Der Autor hat die Ableitung "in den Erwartungswert gezogen"; also hat er den Erwartungswert maximiert (hinreichende Bedingung, also 2. Ableitung brauchen wir nicht), indem er einfach das "innere" des Erwartungswertes abgeleitet hat (also die Funktion in den eckigen Klammern hat er differenziert und den E-Wert einfach beibehalten)!

Meine Frage ist, wann man das darf? Welche Voraussetzungen müssen dafür erfüllt sein?
Habe schon kräftig im Internet geschaut, wie man Erwartungswerte allgemein maximiert oder differenziert, das hat was mit dem Satz von Fubini zu tun glaube ich, aber mehr weiß ich nicht...
Kann man da irgendwas finden, wie man allgemein E-Werte Differenziert?
Irgendwelche Regeln, Kochrezepte?
Danke für die Hilfe!








        
Bezug
Erwartungswert maximieren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mi 10.06.2009
Autor: vivo

Hallo,

es soll das Maximum der Funktion [mm] $\pi$ [/mm] gefunden werden. Deshalb wird die Funktion [mm] $\pi$ [/mm] differenziert.

Warum man Erwartungswert und Ableitung vertauschen darf und unter welchen voraussetzungen, dass findest du zum Beispiel hier:

[]Achim Klenke Wahrscheinlichkeitstheorie S. 143


wenn du beachtest dass der Erwartungswert ein Integral ist.

gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]