matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Erwartungswert bestimmen
Erwartungswert bestimmen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert bestimmen: Tipps
Status: (Frage) beantwortet Status 
Datum: 11:54 Do 05.01.2012
Autor: Mathegirl

Aufgabe
Stelle die Zufallsvariable X als geeignete Summe der anderen Zufallsvariablen dar und benutze die Linearität des Erwartungswertes

a) Aus einem Kartenspiel mit 52 Karten (inklusive 4 Asse) ziehen sie ohne zurücklegen 10 Karten. Sei X die Anzahl der gezogenen Asse. Beszimme E(X)

Okay, was heißt denn: Stelle die Zufallsvariable X als geeignete Summe der anderen Zufallsvariablen dar und benutze die Linearität des Erwartungswertes???

das verstehe ich nicht was ich damit bei der Aufgabe machen soll.

Ich hätte das jetzt mit hypergeometrischer verteilung berechnet.


MfG
Mathegirl


        
Bezug
Erwartungswert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Do 05.01.2012
Autor: M.Rex

Hallo

In dem Skatblatt gibt es doch genau 4 Asse, also kann [mm] \mathcal{X} [/mm] die Werte zwischen 0 und 4 annehmen.

Nun gilt:

[mm] P(\mathcal{X}=0)=\frac{48}{52}\cdot\frac{47}{51}\cdot\ldots\cdot\frac{39}{43}\cdot\frac{38}{42} [/mm]

Bei allen anderen Möglichkeiten musst du noch die Verteilung der k Asse auf den 10 Karten berücksichtigen, also:

[mm] P(\mathcal{X}=1)=\frac{4}{52}\cdot\frac{48}{51}\cdot\ldots\cdot\frac{40}{43}\cdot\frac{39}{42}\cdot{10\choose1} [/mm]


[mm] P(\mathcal{X}=2)=\frac{4}{52}\cdot\frac{3}{51}\cdot\frac{48}{50}\cdot\ldots\cdot\frac{41}{43}\cdot\frac{40}{42}\cdot{10\choose2} [/mm]


[mm] P(\mathcal{X}=3)=\frac{4}{52}\cdot\frac{3}{51}\cdot\frac{2}{50}\cdot\frac{48}{49}\cdot\ldots\cdot\frac{42}{43}\cdot\frac{41}{42}\cdot{10\choose3} [/mm]

[mm] P(\mathcal{X}=4)=\frac{4}{52}\cdot\frac{3}{51}\cdot\frac{2}{50}\cdot\frac{1}{49}\cdot\underbrace{\frac{48}{48}\cdot\ldots\cdot\frac{43}{43}\cdot\frac{42}{42}}_{=1}\cdot{10\choose4} [/mm]

Nun gilt:

[mm] E(\mathcal{X})=\sum_{k=0}^{4}k\cdot P(\mathcal{X}=k) [/mm]

Marius


Bezug
                
Bezug
Erwartungswert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Do 05.01.2012
Autor: Mathegirl

Gut, das habe ich verstanden. Mich hat nur die Linearität des Erwartungswertes und die Summer der Variable irritiert.

Und mich irritiert noch etwas:

Tipp: Überlegen sie zunächst dass im Urnenmodell mit n Kugeln und k Ziehungen, versehen mit der Laplace_verteilung gilt: P("Kugel Nummer i wird an der Stelle j [mm] hezogen")=\bruch{1}{n}. [/mm]


MfG
mathegirl

Bezug
                        
Bezug
Erwartungswert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Fr 06.01.2012
Autor: M.Rex


> Gut, das habe ich verstanden. Mich hat nur die Linearität
> des Erwartungswertes und die Summer der Variable
> irritiert.
>  

Schön, danke für die Rückmeldung

> Und mich irritiert noch etwas:
>  
> Tipp: Überlegen sie zunächst dass im Urnenmodell mit n
> Kugeln und k Ziehungen, versehen mit der Laplace_verteilung
> gilt: P("Kugel Nummer i wird an der Stelle j
> <img class="latex" _cke_realelement="true" alt="$hezogen" [mm] )="\bruch{1}{n}.$"" [/mm] src="http://teximg.matheraum.de/render?d=108&s=$hezogen$">
>  

Woher stammt denn diese Formel? Dieses gilt meiner Meinung nach nur bei einer Ziehung mit zurücklegen. Aber den Fall hast du beim Skatspiel ja nicht.

>
> MfG
>  mathegirl

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]