matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert Bin-vtlg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Erwartungswert Bin-vtlg
Erwartungswert Bin-vtlg < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert Bin-vtlg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Do 31.12.2009
Autor: DesterX

Hallo Leute.

Ich hab folgende Frage:
Sei [mm] $P_{X_i} [/mm] = [mm] B_{1,p}$, [/mm] dh die ZV [mm] $X_1$ [/mm] ist Binomial-verteilt mit $n=1$ und $p [mm] \in [/mm] [0,1]$.  

Meine Frage ist, was ist nun der Erwartungswert von [mm] $|X_1 [/mm] - [mm] p|^3$, [/mm] also
[mm] $E(|X_1 [/mm] - [mm] p|^3)$? [/mm]
Irgendwie stehe ich da grad auf dem Schlauch. Ich habe wohl das Endergebnis vorliegen, aber komme nicht selber drauf.
Vielen Dank schonmal für eure Hilfe.
Gruß, Dester

        
Bezug
Erwartungswert Bin-vtlg: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Do 31.12.2009
Autor: luis52

Moin,

> Meine Frage ist, was ist nun der Erwartungswert von [mm]|X_1 - p|^3[/mm],
> also
>  [mm]E(|X_1 - p|^3)[/mm]?
>  Irgendwie stehe ich da grad auf dem
> Schlauch.

Bestimme die Werte, die [mm]|X_1 - p|^3[/mm] annimmt (und die zugehoerigen Wahrscheinlichkeiten). Tipp: Es sind zwei!

vg Luis

Bezug
                
Bezug
Erwartungswert Bin-vtlg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Do 31.12.2009
Autor: DesterX

Gut, also $X [mm] \in \{0,1\}$ [/mm] mit [mm] $P_X=p*\delta_1+(1-p)*\delta_0$ [/mm]
Also [mm] $|X_1 [/mm] - p| [mm] \in \{p,1-p\}$ [/mm]
Dh: [mm] $|X_1-p|^3 \in \{p^3,(1-p)^3\}$ [/mm]

=> [mm] $E(|X_1-p|^3)= [/mm] (1-p)* [mm] p^3 [/mm] + [mm] p*(1-p)^3$ [/mm]

Ist das tatsächlich bis dahin in Ordnung?

Bezug
                        
Bezug
Erwartungswert Bin-vtlg: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Do 31.12.2009
Autor: luis52


>  
> Ist das tatsächlich bis dahin in Ordnung?

[ok]

vg Luis


Bezug
                                
Bezug
Erwartungswert Bin-vtlg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Do 31.12.2009
Autor: DesterX

Vielen Dank für deine Hilfe und guten Rutsch wünsche ich ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]