matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Beweis
Status: (Frage) beantwortet Status 
Datum: 12:11 Mi 28.09.2011
Autor: mikexx

Aufgabe
Hallo, liebes Team!
Eine Aufgabe, die mich beschäftigt, ist folgende:

Sei [mm]X[/mm] eine Zufallsvariable, die ihre Werte in [mm]\left\{0,1,2,3,\hdots\right\}[/mm] hat.

Man zeige:

[mm]E(X)=\sum_{k\geq 1}P(X\geq k)[/mm]

(Es sind beide Seiten eventuell [mm]+\infty[/mm].)


Wie beweist man das?

Mein Ansatz:

[mm]E(X)=\sum_{x\in X(\Omega)}x\cdot P(X=x)=\sum_{x\in\left\{0,1,2,3,\hdots\right\}}x\cdot P(X=x)=\sum_{x\in\left\{1,2,3,\hdots\right\}}x\cdot P(X=x)[/mm]

Doch so recht weiter komme ich an dieser Stelle nicht.
Wer kann mir bitte beim Beweis dieser Aussage weiterhelfen?

Ich freue mich über jede Hilfe.

mikexx

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mi 28.09.2011
Autor: Al-Chwarizmi

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo mikexx,

es sei p_k:=P(X=k)

Dann betrachte einfach einmal das Schema

     $\pmat{p_1&p_2&p_3&p_4&p_5&p_6&...&...\\0&p_2&p_3&p_4&p_5&p_6&...&...\\0&0&p_3&p_4&p_5&p_6&...&...\\0&0&0&p_4&p_5&p_6&...&...\\0&0&0&0&p_5&p_6&...&...\\0&0&0&0&0&p_6&...&...\\...&...&...&...&...&...&...&...\\...&...&...&...&...&...&...&...}}$

und summiere dessen gesamten Inhalt auf zwei verschiedene
Arten ! Das p_0 kannst du dann noch separat einbringen.

LG   Al-Chw.

Bezug
                
Bezug
Erwartungswert: meine Beweisidee
Status: (Frage) beantwortet Status 
Datum: 12:56 Mi 28.09.2011
Autor: mikexx

Ich weiß nicht, ob Du das meinst, aber:

Ich schreibe die Summe erstmal aus, also

[mm]\sum_{x\in\left\{1,2,3,\hdots\right\}}x\cdot P(X=x)=P(X=1)+P(X=2)+P(X=2)+P(X=3)+P(X=3)+P(X=3)+\hdots[/mm]

Dies kann man nun umsortieren und bekommt folgende Summanden:

[mm]P(X=1)+P(X=2)+P(X=3)+\hdots[/mm] (bis [mm]P(X=\infty)[/mm])

[mm]+P(X=2)+P(X=3)+P(X=4)+\hdots[/mm] (bis [mm]P(X=\infty)[/mm])

und so weiter.


Diese Summanden sind ja aber (da X diskret ist und deswegen [mm]P(X\geq k)=P(k)+P(k+1)+P(k+2)+\hdots[/mm]) nichts Anderes als

[mm]P(X\geq 1)+P(X\geq 2)+\hdots =\sum_{k\geq 1}P(X\geq k)[/mm].

[mm] \Box [/mm]

Dies wäre mein Beweis. Ist das okay?

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mi 28.09.2011
Autor: barsch

Hallo,

die Beweisidee ist korrekt. Hier wurde die Frage auch gestellt.

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]