matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 12:37 Mo 05.01.2009
Autor: pathethic

Aufgabe
Der diskrete Wahrscheinlichkeitsraum Ω = {1, 2, . . . , 6} × {1, 2, . . . , 6} fur zwei Münzwurfe sind Zufallsvariablen fur die Summe und die Differenz der beide Werte interessant:

X (a, b) = a + b
Y (a, b) = |a − b|

Der Erwartungswert der Zufallsvariablen X ist definiert als E(X) = [mm] \summe_{\omega \in \Omega}^{} X(\omega) Pr(\omega) [/mm]

Im Beispiel kann man Erwartungswerte relativ leicht ausrechen:
1) E (X)  = 7 und E (Y) = [mm] \frac{70}{36} [/mm]

Aus unserem Matheskript.

Ich versteh jedoch nicht wie man auf die 7 kommt. Für jeweils einen Würfel versteh ich die Problematik, oder denke ich zumindestens. [mm] Pr(\omega) [/mm] ist jeweils [mm] \frac{1}{6} [/mm] und für zwei Würfe dann [mm] \frac{1}{36}. [/mm] Nur versteh ich nicht wie das [mm] X(\omega) [/mm] gewählt wurde.

Hat jemand eine Idee?

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Mo 05.01.2009
Autor: steffenhst

Hallo,

für das erste Beispiel ist X(w) doch ein Element der Menge {2,3,4,5,6,7,8,9,10,11,12}. Und jetzt ganz normal den Erwartungswert bestimmen.

Grüße, Steffen

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Mo 05.01.2009
Autor: pathethic

Aber das wäre doch dann:

[mm] \frac{1}{36} \cdot [/mm] 2 + [mm] \frac{1}{36} \cdot [/mm] 3 + [mm] \frac{1}{36} \cdot [/mm] 4 + [mm] \frac{1}{36} \cdot [/mm] 5 + [mm] \frac{1}{36} \cdot [/mm] 6 + [mm] \frac{1}{36} \cdot [/mm] 7 + [mm] \frac{1}{36} \cdot [/mm] 8 + [mm] \frac{1}{36} \cdot [/mm] 9 + [mm] \frac{1}{36} \cdot [/mm] 10 + [mm] \frac{1}{36} \cdot [/mm] 11 + [mm] \frac{1}{36} \cdot [/mm] 12  = 2,13..

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mo 05.01.2009
Autor: steffenhst


> Aber das wäre doch dann:
>  
> [mm]\frac{1}{36} \cdot[/mm] 2 + [mm]\frac{1}{36} \cdot[/mm] 3 + [mm]\frac{1}{36} \cdot[/mm]
> 4 + [mm]\frac{1}{36} \cdot[/mm] 5 + [mm]\frac{1}{36} \cdot[/mm] 6 +
> [mm]\frac{1}{36} \cdot[/mm] 7 + [mm]\frac{1}{36} \cdot[/mm] 8 + [mm]\frac{1}{36} \cdot[/mm]
> 9 + [mm]\frac{1}{36} \cdot[/mm] 10 + [mm]\frac{1}{36} \cdot[/mm] 11 +
> [mm]\frac{1}{36} \cdot[/mm] 12  = 2,13..

Nein, eher so (als Bsp.):

E[X] = 2 * [mm] Pr_{X} [/mm] ({2}) + ...+ 6 * [mm] Pr_{X} [/mm] ({6})+ ... + 12 * [mm] Pr_{X} [/mm] ({12})  = 2 * [mm] Pr(X^{-1} [/mm] (2) + ... + 6 * [mm] Pr(X^{-1} [/mm] (6)) + ... + 12 * [mm] Pr(X^{-1} [/mm] (12)) = 2 * Pr((1,1)) + ... + 6 * Pr((1,5)(5,1),(2,4),(4,2),(3,3)) + 12 * Pr ((6,6))

Dabei meint [mm] Pr(X^{-1}(12)) [/mm] die Wahrscheinlichkeit für die Päarchen (x,y) deren Summe 12 ergibt. Da gibt es nur ein Paar nämlich (6,6), so dass P = 1/36 ist. Im Falle von [mm] Pr(X^{-1}(6)) [/mm] gibt es fünf Päarchen also ist P = 5/36 usw. OK?
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]