matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Mi 21.05.2014
Autor: Trikolon

Aufgabe
Sie spielen an einem idealen Glücksrad mit n gleich großen Feldern n [mm] \in [/mm] IN [mm] \{1} [/mm] welche mit Nummern von 1 bis n versehen wurden. Nachdem Sie das Glücksrad gedreht haben, erhalten Sie die Nummer des Feldes auf dem das Rad stehen geblieben ist in Euro. Zeigt das Glucksrad auf die Zahl
n, so dürfen Sie eine weitere Runde unabhängig von der ersten spielen. Das Ergebnis der zweiten Drehung wird dann mit dem der ersten Drehung (also n) addiert. Zeigt das Glucksrad bei der zweiten Drehung wieder auf n, wird wie bei der ersten Drehung wiederholt und addiert, u.s.w.
Es sei X die bei diesem Spiel erzielte Endsumme. Bestimmen Sie die Verteilung und den Erwartungswert von X.

Hallo. Also ich habe versucht, den Erwartungswert zu bestimmen:

[mm] 1/n*1+1/n*2+1/2*3+...+1/n*n+1/n^2*1+...+1/n^2*n+1/n^3+...+1/n^3*n+... [/mm]
=( [mm] \summe_{i=1}^{n} i)*(1/n+1/n^2+1/n^3+...) [/mm]
=( [mm] \summe_{i=1}^{n} [/mm] i)*( [mm] \summe_{k=1}^{\infty} (1/n^k)) [/mm]

Stimmt das so? Falls ja, wie kann man das vereinfachen? Den ersten Summanden mit der Gauß-Summenformel, und den zweiten?

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mi 21.05.2014
Autor: luis52

Moin,

koenntest du bitte fuer einen alten Mann  einen Schritt nach dem anderen tun?[old]  Wo ist denn die Verteilung von $X$?



Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Mi 21.05.2014
Autor: Trikolon

Naja für alle Sektoren ist die wkt ja 1/n.  Ich hatte es zunächst mit n=4 ausprobiert und den entsprechenden Baum gezeichnet. Bei der Verteilung weiß ich nicht genau wie ich das aufschreiben soll..

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Mi 21.05.2014
Autor: luis52


> Naja für alle Sektoren ist die wkt ja 1/n.  Ich hatte es
> zunächst mit n=4 ausprobiert und den entsprechenden Baum
> gezeichnet. Bei der Verteilung weiß ich nicht genau wie
> ich das aufschreiben soll..

Bestimme $P(X=x)$ fuer [mm] $x=1,\dots,n$, [/mm] dann fuer [mm] $x=n+1,\dots,2n-1$ [/mm] usw.


Bezug
                                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Mi 21.05.2014
Autor: Trikolon

Stimmt von dem was ich zum Erwartungswert geschrieben hatte nix?
naja ich dachte es ist P (X=x)=1/n

Bezug
                                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Mi 21.05.2014
Autor: luis52


> Stimmt von dem was ich zum Erwartungswert geschrieben hatte
> nix?
>  naja ich dachte es ist P (X=x)=1/n

Nein. $X$ nimmt unendlich viele Werte an.


Bezug
                                                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 Mi 21.05.2014
Autor: Trikolon

Dann weiß ich es nicht. ..

Bezug
                                                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mi 21.05.2014
Autor: luis52


> Dann weiß ich es nicht. ..

Sei zunaechst [mm] $x=1,\dots,n-1$. [/mm] Dann ist

[mm] $P(X=x)=P(X=x\mid X
Sei nun [mm] $x=n+1,\dots,2n-1$ [/mm] und [mm] $A_1$ [/mm] das Ereignis, dass $n$ erdreht wird im ersten und eine der  Zahlen [mm] $1,\dots,n-1$ [/mm] im zweiten Versuch. Dann ist

[mm] $P(X=x)=P(X=x\mid A_1)P(A_1)=\frac{1}{n-1}\cdot\frac{1}{n}\cdot\frac{n-1}{n}=\frac{1}{n^2}$. [/mm]

Jetzt mach mal weiter.



Bezug
                                                                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mi 21.05.2014
Autor: Trikolon

Genau dass hatte ich ja in meinem ersten Post beim Erwartungswert geschrieben. ..Mit dem1/n, [mm] 1/n^2, 1/n^3 [/mm] etc.

Bezug
                                                                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mi 21.05.2014
Autor: luis52


> Genau dass hatte ich ja in meinem ersten Post beim
> Erwartungswert geschrieben. ..Mit dem1/n, [mm]1/n^2, 1/n^3[/mm] etc.

Prima. Aber du hast nicht geschrieben, wie die Verteilung von $X$ aussieht. Naemlich wie?


Bezug
                                                                
Bezug
Erwartungswert: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:36 Sa 24.05.2014
Autor: Trikolon

Könntest du diese Rechnungen bitte genauer erklären?

Bezug
                                                                        
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 So 25.05.2014
Autor: luis52


> Könntest du diese Rechnungen bitte genauer erklären?  

Was genau verstehst du denn nicht?


Bezug
                                                                        
Bezug
Erwartungswert: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 26.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                                                
Bezug
Erwartungswert: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:53 Di 27.05.2014
Autor: Trikolon

Habe das mittlerweile soweit verstanden. Allerdings weiß ich nicht wie ich groß Omega aufschreiben soll...


Bezug
                                                                        
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Di 27.05.2014
Autor: luis52

Die Aufgabe lautet:

Bestimmen Sie die Verteilung und den Erwartungswert von X.

Da steht nichts von [mm] $\Omega$ [/mm] ...

Bezug
                                                                        
Bezug
Erwartungswert: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 29.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]